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Bethe ansatz solution of triangular trimers on the triangular lattice
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Recently, a model consisting of triangular trimers covering the triangular lattice was introduced and its exact
free energy given. In this paper we present the complete calculation leading to this exact result. The solution
involves a coordinate Bethe ansatz with two kinds of particles. It is similar to that of the square-triangle
random tiling model by Widom and Kalugin. The connection of the trimer model with related solvable models

is discussed.
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I. INTRODUCTION the thermodynamic limit by Kalugifl6]. An exact solution

of the trimer model was announced [ih7]; in the present

The dimer problem is one of the classic models of statispaper we describe its derivation. The solution is very similar
tical mechanics. A dimer in this context is a particle thatto that for the square-triangle tiling, and we closely follow
occupies two neighboring sites of a lattice. In the dimer-Kalugin’s arguments. The outline of our calculation is as
monomer mode'y dimers and monom@nartic'es Occupying fOIIOWS..A transfer matrix for the mOde| IS formulated. After )
one lattice site eaghare placed on a lattice such that they theT choice of a reference state two types of elementary exci-
cover all sites, without overlap. Equivalently the monomerstations are found. They are closely related to the above-
can be viewed as empty sites; the lattice is then partly COVmennone_d domain-wall struc_ture of the_ model. In order to_
ered with dimers. This model was introduced to describediagonalize the transfer matrix, a coordinate Bethe ansatz is
diatomic molecules adsorbed on a substfdfe Attempts ~ S€t up in terms of the elementa_ry Qxcitations. The resulting
have been made in vain to solve this model exactly, that is?em[gra}nq canonical ensemble is discussed. In the thermody-
to calculate its free energy. The special case that there are AgMic limit the Bethe ansatz leads to a set of two coupled
empty sitesmonomersis now known as the dimer problem. integral equations. These can be sc_)lved in a}_spemal case.
There the dimers cover the lattice completely and withoufrom their solution the relevant physical quantities are com-
overlap. This model has been solved for planar lattices indehuted. The results _of the calculation are su_mmarlzed in S_ec.
pendently by Kasteleyf2] and by Temperley and Fishgg].  VIE. We t_hen consider the entropy as function of the den_s,lty
Their solution is based on the possibility to express the par©f down trimers. The model undergoes two phase transitions
tition function of the model as a Pfaffian. For many planarin the density of down trimers. _
lattices, the dimer problem can also be solved by means of Finally, We_dlscuss the relat_|(_)n between the trimer model,
the Bethe ansatz. On the honeycomb lattice, for example, i€ square-triangle random tiling model, and yet another
can be formulated as a five-vertex model. This is a speciafolvable model with a hexagonal domain-wall structure.
case of the six-vertex model whose Bethe ansatz solution is
well known[4—11]. A review of the dimer problem is given [l. PRELIMINARIES
in [12].

Inspired by the solvability of the dimer model, we con-
sider lattice coverings by trimers. A trimer is a particle that ~Figure 2 shows a very regular configuration of the model
occupies three lattice sites. We only consider triangular triin which the trimers are positioned on a sublattice of the
mers, which live naturally on the triangular lattice. As in the triangular faces. There are six such sublattices, which we
dimer model, we require that these particles cover the lattic@umber 0, 1,..., 5 as indicated in the figure. Note that the
completely and without overlap. Thus every lattice site iseven-numbered sublattices consist of the up triangles while
covered by precisely one trimer. Figure 1 shows a typical
configuration.

As will be shown in Sec. Il B, the configurations of this
model have a structure of domains separated by domain
walls. The domains are hexagonal and the domain walls
form a honeycomb network. Similar domain-wall structures
are used to describe an incommensurate phase of a mono-
layer of a monoatomic gas adsorbed on a hexagonal substrate
[13]. The entropy of such a network is largely due to the
“breathing” of the cells: it is possible to enlarge a domain
and simultaneously shrink its six neighbors or vice versa.

Hexagonal domain-wall structures also occur in the
square-triangle random tiling modgl4]. For that model a
coordinate Bethe ansatz was found by Widftb]. The re- FIG. 1. A typical configuration of the trimer mode. Each lattice
sulting Bethe ansatz equations were solved analytically imite belongs to precisely one trimer.

A. Sublattices
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FIG. 2. A regular configuration in which the trimers occupy one /\W\/\/\/\M
sublattice of the faces. There are six such sublattices numbered 0, V\/V\]/\/\s/\/\/\‘
1,..,5.

the down triangles constitute the odd-numbered sublattices. \1/\/\“/\‘/\/\5/
For a given configuration, Idtl denote the total number of
trimers and lefN; denote the number of trimers on sublattice

i. We wish to compute the entropy per trimer as a function otrh
the sublattice densities

FIG. 3. The configuration from Fig. 2 admits line excitations.
ese domain walls can meet in Y(®p) and inverted Y’s(bot-
tom). The Y’s are chiral; the mirror image of the Y shown here

N N N contains a trimer on sublattice 4 instead of 2. The inverted Y’s are
pO:_O, 91:—11 p5:_5_ achiral. To guide the eye the trimers not on sublattice O are shaded
N N N lighter; the numbers indicate their sublattices.
These densities satisfy the obvious linear constraint C. Transfer matrix

_1 1 In an allowed configuration of the model each lattice site
potp1tp2tpatpstps=1. (1) belongs to precisely one trimer. This trimer sits either on one

o ) of the three lattice faces above the site or on one of the three
In Sec. IIE it will be shown that when toroidal boundary tzces below the site. Label the site with a “spirf” or |
conditions are imposed the densities also satisfy a quadrat'&ccordingly.

constraint Consider a horizontal row of lattice sites and assume that
the trimer configuration below that row is given. It deter-
PoP2F P2Pat Papo=pP1PsT P3PsTt Pspa- (20 mines the spins on that row. The sites occupied by a trimer

below have a spin, while those not occupied by such a
Hence, of the six sublattice densities only four are indepentrimer must carry a spin. Now consider the next layer of
dent. In order to be able to set up a transfer matrix we pass t@ttice faces above this row. In order to decide what trimer
the grand canonical ensemble. The density of trimers on eacbnfigurations on this layer are possible, it is sufficient to
sublatticei is controlled by a fugacityv; or, equivalently, a know which sites are already covered. This is precisely the
chemical potentiaju;=Inw;. After the transfer matrix has information encoded by the spins.
been diagonalized we shall Legendre transform back to the This shows that the model can be described in terms of a

canonical ensemble. transfer matrix that connects two consecutive rows of spins.
Let o denote the spin configuration on the lower row and
B. Domains and walls the spin configurations on the upper row. Consider all the

o . blattice 0 letelv while leaving the oth trimer arrangementéwithout overlap$ on the layer in be-
f. CC‘:)?y:?g subia |;:e co:?p_e et% while f_eavmtg € (f) tr?rtween that are compatible with the spin configuratienand
Ivé sublattices empty results in the confniguration ot the (Generally there is at most one such arrangeméirite

model shown in Fig. 2. .Th's arra_ngemer!t does nOt.adm'tsum of their Boltzmann weights is the transfer matrix ele-
local changes. However, it is possible to flip a whole line ofm T

trimers. Such a line can be viewed as a wall separating two
domains consisting of trimers on sublattice 0. These domain
walls come in three type@rientationg corresponding to the
three odd-numbered sublattices. When two walls of different In the configuration obtained by fully occupying sublat-
types meet, a wall of a third type is formed. A trimer on tice 0, each row of spins consists of repeating blo¢ks.
sublattice 2 or 4 occurs when three domain walls of differenfTherefore we group the sites into blocks of three, as in Fig.
types meet in a vertex shaped as a Y, but this does nat. Number the blocks in a row from left to right.

happen at an inverted Y. Figure 3 shows examples of how Consider a trimer configuration on a layer of the lattice.
the three types of domain walls can meet. In a general cori-et L denote the number of blocks per row and let
figuration the domain walls form a hexagonal network. Ng,Nq,...,Ns denote the number of trimers in this layer on

TO "

D. Conserved quantities and elementary excitations

066122-2



BETHE ANSATZ SOLUTION OF TRIANGULAR TRIMEFRS . .. PHYSICAL REVIEW E 63 066122

llds
S=
J

FIG. 6. Decompose the triangular lattice into hexagonal patches
such that the lower middle triangle of each patch belongs to sublat-
tice 0. The other triangles, in counterclockwise order, then belong
FIG. 4. Spins for the configuration from Fig. 2. For clarity, the to sublattices 1, 4, 3, 2, and 5. These patches can be decorated with

edges of the triangular lattice have been largely omitted. the world lines of the L particleésolid) and R particlesdashedl

each sublattice. The horizontal and vertical lattice direction-}! in the lower row half a step to the left in the upper row.
are viewed as “space” and “time,” respectively; the lower This block is a left-moving elementary excitation of the ref-

and upper row of the layer then are time-slices at titrmsd ~ €"€NCe state. It will be called an L particle. Similarly the
t+1. Counting the number of spins in the lower row and PI0Ck T11 is an elementary right-moving excitation, or R

distinguishing by the position inside the block, gives particle. The conserved quantitieg, ++n,1, and nes|
+n,7, are the numben, of L particles and the numberg

No+Ny+n,. of R particles, respectively.

The particle content of the blocks T, [T, and |1 has
now been determined. For each of the other five blocks both
n_ andng are greater than zero. Therefore these blocks are
combinations of the elementary excitations. They will be dis-
cussed in more detail in Secs. Il C-III E.

We have found no other conserved quantities thaand
ng (except in the special case whap=0 or ng=0).

t _

n]‘o o
N =np+ng+ny,
n(.t).T=n4+ n3+ no.

From this, one gets

n|7e+nlf,=L—no—n;+ng+ny, (3 . . .
E. World lines and quadratic constraint
nﬁ’ll + n(.?.z L—ng+n,+nz—ng, (4) Divide the lattice into hexagonal patches containing one

face from each sublattice in such a way that the lower middle
for 7=t. The same can be done for thespins in the upper triangle of each patch belongs to sublattice 0. There are six
row. From this one gets that Eq®) and (4) hold for 7=t trimer configurations possible on such a patch. Decorate each
+1. Hence the quantities s «+n,7, andne«| +n,7, are  patch with solid and dotted lines according to this configu-
conserved between rows. ration as shown in Fig. 6. It is straightforward but tedious to
These conserved quantities are non-negative. The onlyerify that the decorations of the patches making up the lat-
row of spins for which both are zero consists entirely oftice fit together such that the set of solid and dashed decora-
blocks 1[7. There is only one way to fit a layer of trimers tions run continuously from the bottom to the top of the
above this row. Of course the row of spins above that layetattice. It can also be checked that the crossings of these lines
consists again entirely of blocks 1. This row state will be  with the lattice rows correspond to the locations of the L
chosen as the “empty” or reference state for the Bethe anparticles(solid lineg and R particlegdashed lines Hence
satz in Sec. lll. these lines are the “world lines” of thé particles and R
A row of spins withn e ¢+ n,1,=1 andne .| +n,1,=0 particles where the horizontal and vertical lattice direction
is obtained by replacing one block, say, at positiom the  are viewed as “space” and “time,” respectively.
reference state witl)| 7. There is only one possible configu-  Impose toroidal boundary conditions. We now derive the
ration of trimers on the layer above, see Fig. 5. The rowguadratic constraint2) by the same method as that used for
above consists of blockg|T except for one blockl [T at  rectangle-triangle random tiling models [28,19. Cut the
positionx— 3. Thus the transfer matrix has shifted the block torus open along a horizontal row of sites so that the model
is now on a cylinder. By stacking a number of copies of the

dI——ab 4 —H J4—F+ configuration on top of each other, we can achieve that each
T T Y Y T I T
| A ' A
| A O

world line winds around the cylinder an integer number of
| times. Let 21 be the number of rows in the configuration
including these copies. In each row we can count the number

FIG. 5. There is only one way to fit trimers below a row con- of L particles and R particlefsee Eqs(3) and (4)],
sisting of one blockl | T amidst blocks] | 1. It leads to another such

row of spins below. n.=L—ng—n;+nz+n,, 5)

}
|
; ! ! \J
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ng=L—nNg+n,+n;—ns. (6) left, see Fig. 5. The layer between the two rows contains
—1 trimers on sublattice 0 and one trimer on sublattice 5.
Summing over the entire lattice yields Hence the action of théreduced transfer matrix on the
“wave function” is given by
2MnL:2LM_N0_N1+N3+N4, (7)

2Mng=2LM —No+Np+N3—Ns. 8 (Tlﬂ)(llTXFVWTZlﬂ(lHXJF%)-

The total leftward movement of the L particles can be coM-\v/e use|| T x as notation for the row configuration that has

puted in two ways. On the one hand, it can be expressed i S -
terms of the winding numbers of the L particle world lines. " block | [T at positionx and blocksT|T at the other posi

Since these world lines do not cross each other, they all ha/#°ns) The solution of the eigenvalue probley=A ¢ is
the same winding numbé&¥, . On the other hand, leftward L WL TX) =AU
. . . . . . u )
particle movement is associated with trimers on sublattices 2
and 5, see Fig. 6. The same can be done for the total rightyhereA,, is some constant and
ward movement of the R particles. Hence
Ws
Wo

n W L=3(Ny+Ns), 9) A=—ul2

NRWRL =3(N1+Ny). (10)
C. One L particle and one R particle
The crossings of L-particle world lines and R-particle world
lines can be counted in two ways. On the one hand, their
number can be expressed in terms of the winding number
On the other hand, crossings occur precisely at trimers o
sublattice 2 or 4. This yields

Consider a row of spins containing an L parti€lg 1) at
ositionx and an R particléT | ]) at positiony with x<y. If

he particles are apart, this situation was formed by shifting
the L particle to the left and the R particle to the right,

~ WsW
NLR(Wy+We) =Na Ny TP TLIY) == (L LT+ 3.1 Ly =
0
Substituting into the above equation, first E¢®. and (10) )
and then Eqgs(7) and (8), then multiplying by 2. M, using if y—x>1. (11)
2LM =Ngy+N;+N,+N3+N,+Ng [We write the arguments af in order of increasing position;
for example, the notation in the left-hand sidedS) of Eq.
and dividing byN? yields the quadratic constraif®). (11) implies thatx<<y.] If, however, the particles are next to
each other, the situation was formed from a “bound state”
Ill. BETHE ANSATZ (111), see Fig. Jtop),

In this section we describe a Bethe ans®2) that di- ~ N 1. WsWy
agonalizes the transfer matrix. Since the particle numbers (T (LlTz=3z.Tllzt3)= W p(lllz). (12
andng are conserved, the transfer matrix is block diagonal in
these quantities. We begin by considering the sector witfThis bound state was formed from another type of bound
n.=0 andng=0 and then pass to sectors with higher par-state(711),

ticle numbers.
Wy

S (11124 ).
13

~ W, .
(Ty)(ll1l2)= S p(111z2=3)+

A. No particles w 0

The only state in the sector =0, ng=0 is the reference
state that consists entirely of block$T, so this sector is one The two terms correspond to two chiral configurations, one
dimensional. Therefore the transfer matrix acting on this secef which is depicted in Fig. 3. The latter bound stété1)
tor is trivially diagonal. The layer between two consecutivewas formed from an R particle and an L particle in adjacent
rows in the reference state consistd.dfimers on sublattice blocks, the R particle sitting to the left of the L particle,

0, so its Boltzmann weight i& . It is the eigenvalue of the
transfer matrix in this sector. For convenience we define the

“reduced” transfer matrixT to be the transfer matrix di-
vided bywg.

- 1
(Tw)mﬁz):W—O¢<Tuz—l,imz+%). (14)

This configuration may have arisen from the same bound
state again. The alternation of this bound state and the situ-
ation where the R particle and L particle are next to each
Consider a row of spins containing a single L particleother(1|| |]T) corresponds to the vertical domain wall in
(117) at positionx. The transfer matrix has shifted this par- Fig. 3. The configuration where the particles are next to each
ticle from positionx+ 3 in the row below half a step to the other may also have arisen from a situation where the par-

B. One L particle
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ticles were two steps apart, by shifting the R particle half a
step to the right and the L particle half a step to the left, see

P(1112)= DBUUAquZUZ,

Fig. 3 (bottom), where
T 1 1y _ 3 1
T 1lz=3 1112+ ) =wep(1112) Bw_(l WgWgulv) | an
WyWs 1Ws
+—Wz—¢(TllZ—1.llTZ+1)-
° D= 0 (18)
(15 WiWs '~

Finally, a configuration where the particles are apart wad he eigenvalue equation for E(L3) is satisfied too if
formed by shifting the R particle half a step to the right and

the L particle half a step to the left, Auy =5,
Avu v
(T‘p)(TllYallTX)— 2 ‘MTlly % llTX'F%) where
2 3 -1
if x—y>1. (16) _ W (ﬂ Ly, W ) _ WoWs
| o Su, WoWe Wsu + le _2_21W5u v

We want to solve the eigenvalue equatibfi= A ¢ for Egs. (19
(11)—(16). The eigenvalue equation for Eq4.1) and(12) is

The above analysis suggests to interpret the bound stgte
as LR (in that ordey and the bound staté]1 as RL. The
eigenfunction is then written

J(Lx,Ry)=A,,u"v?Y,

satisfied by
PLLTXTLLY) = Ay, u Y,
Pp(ll12)=Ay,uv*

with eigenvalue A, oYU i x—y=2
=< B, A, vYut if x—y=1

1_Ws 1/2Wl ~1/2 $(Ry,Lx) vupul | y
A= Wo WoU ' DB, A, wYu* if x—y=0.

Similarly the eigenvalue equation for Eqd4), (15), and D. Two L particles and one R particle

(16), with the same\, is satisfied by
STLLY LX) =A, 0 u”

if x—y>1,

P(Tllz— l,ilTZ—l— %) = BUUAvuvzfllzuerl/z,

lﬂ( LXl ’ Ry, LX2) =

H(Ry,Lxq,LX;) =

\

m

A similar but more tedious analysis can be carried out for
the sector with two L particles and one R particle. There is a
new bound staté¢|17) that can be interpreted as LRL. A

solution of the eigenvalue problefiy=A ¢ is given by

X1 2 Ly
Y(Lxa,Lxe Ry) = E Au i n@pUn(n)Un2)V
.
X1y -
Z A”v(l)”“w(z)uw( uw(z) if X,—y=2
X1 . o
Z B”uv(Z)A”w(l)U“w(z)uw(l)v uw(z) if x;—y=1
X1 oY o
2 DBUUW(Z) Ura v“w(z)uw( uw(z) if x,—y=0,
\
(
TR TR . .
; AotV Vi) Ur2) if x,—y=2
X1 . Xo . o
2 Bvu‘n_ A””wm“ v uﬁ(l)uw(z) if x,—y=1

Yyt ' —y=
; DBUUml)AU”w(l)Uw(z)U uﬂT(l)UW(Z) it x,—y=0,
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wherem runs through the permutations {if,2;. The ampli-  segment R/j.Lx; in the particle sequence witk—y;=1,
tudes must satisfy there is a factoBvU(j)uﬂ(i). For each such segment wit
A A —Yy;=0, there is a factoDBUU(j)uﬁ(i). The amplitudeA . . .
WA W 1 i), (200 depends on the sequence of the variahleand v corre-
Asuw Aoy, sponding to the sequence of L particles and R particles. The
u's are in the ordeu ;) Ur(2) - Uan(n) and thev’s are in
Avou,  Auiuo o the orderv U peeesU , but the two sequences in-
[ Y Su (l +i ,) (21) a(1) Y o(2) a(ng)
Avuu, Aoy, iv ' terlace. The amplituded . .. are defined up to an overall

factor by the conditions
with S, , given by Eq.(19). Note that the amplitude ratios in

Eg. (20) do not depend on and that the amplitude ratios in A .. B L
Eq. (21) do not depend om;. . The eigenvalue is given by A oo -1 (#i")
I |
K:WS %/2W5 1/2W10—1/2 A
WO WO W0 ...Ujvjr...:_ ) .,
A...Uj/l)j.. 1 (J#:J )’
E. Arbitrary particle numbers
With two L particles and two R particles, there is a new A SUjvg e
bound state(|T]) that can be interpreted as LRLR. This A v _S“i”j

completes the list of possible blocks and their interpretation
in terms of particles, see Table I.

The solution given above of the eigenvalue probf&m h
=Ay for two L particles and one R particle generalizes to .eu”(')
the higher sectors. Before describing this generalization wd'ven by
introduce a notational convention. The indexunning from

with Suv; given by Eq.(19). Finally comes the product of all
andv The eigenvalue for the eigenfunctigns

1 to n_, will be used to number L-particle positions and ﬁ Ws mﬁ Wy _1,2
Bethe-ansatz variables. The indg)between 1 andg, will s W UL wo ¥

refer to R particles. Now consider a succession of L particles

with coordinates«,<x,=---<Xx, and R particles with co- \ye haye no rigorous proof that the above solution is correct
ordinatesy;<y,=<-+-<yp_. (Note thatx;=x;,1 can arise for all sectors, but using computer algebra we have verified it
only from a block LRL or LRLR, sa;=y;=X;,, for some for n +ng<5.

yj.) The value of the wave function is given by It should be noted that the formulation of the solution
) depends on the particle interpretation of the three-spin
y(particle sequenge blocks. The particle content of each three-spin block is de-
n. R termined byn, =n..+n,7, andng=n . .+n,7,, but the
:E 2 H (D and B . 1:[ H a(])’ order of the particles within a block can be chosen. For ex-

ample, we could interpref1T as LLR, LRL, or RLL. The
choices in Table | lead to a simple description of the eigen-
functions; each factoD or B depends only on two succes-
sive particles. Other choices than those in Table | would
make the formulation of the eigenfunctions more cumber-
some; there would be more factors than jbstnd B, and
some would depend on nonsuccessive particles.

(22)
where 7 and o run through all permutations df., 2,...,n,}
and {1, 2,...,ng}, respectively. We shall now describe the
factors in the right-hand sideRHS) of Eq. (22). For each

TABLE I. The three-spin blocks.

F. Bethe ansatz equations

Spins Particles The eigenfunctiony given by Eq.(22) satisfies periodic

T None boundary conditions if the Bethe ansatz equatid&E’s)

HT L hold,

TH R R

1 LR L_(_q\n -1

m RL ur=(-pn 1 sy, (23)

11 LRL

[ RLR N

I LRLR vi=(-1" ] s;t. (24)
=1 i
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Note that although the description of an eigenfunction in A. Legendre transformation
terms of u's and v’'s involves factors(17) and (18), the
BAE's only contain factorg19).

Upon substitution of

In passing to the grand canonical ensemble, each trimer
on a sublatticd was given a weightv;=exp(;). Certain
combinations of these weights occur in the BAE2$) and
3 ) 3 ) (27) and in the expressio(28) of the transfer matrix eigen-
| WoW3Wy d p=— WiW4Ws 1 value in terms of the BA roots. It is convenient to assign
_(W1W2Wg) ¢ and v (WSW2W3) 7 names to the corresponding combinations of the chemical

(25) potentialsy; ,

_1 o _
the BAE’s (23) and (24) become bL=2[Bro= 1= pot uat ma—3us)
+pr(— ot m1— ot 3= st us)],

3 L/2 NR/2
(W0W3W4) (W1W3W5> Rz

i r=3[(Bpo— 31+ pot wa— pa— s)

W WoWse WoWoW,
i - & +pL(—pot pm1— pot pa— pat ps)],
= (—1)"t R 1:[1 n _1, (26) )
1= ' mL=3(— po— H1— Mot pat pat ps),
3 L2
WoWoW3 (W1W3W5)nL/2 L ur=7(— ot w1t ot pma— pa— ps),
WHW, Wi WoW,W,, i

wherep, =n, /L and pg=ng/L denote the densities of the
L b §. particles L and R. With these definitions, the BAEX6) and

=(—1)-""r~ 11_[ & ——— (27)  (27) can be written

R
These equations can be considered the key result in the exact (efLg)lb=(—)ntR™ lH —1 g, _1, (29
solution of the model. They determine the possible values for =1 7;

& and ». These in turn determine the eigenvalues and the

eigenfunctions of the transfer matrix,

(%)t = (=)t F= 1H &t 7"+ ;'1, (30

n /4 ng/4
Ayt W3W, Wi | "V wywowg | TR
U0 wow,w WoW,W while the eigenvalue expressi¢®8) becomes
oW1 W oW4Wsg g p

112
: (28)

n. nR 1/2

H fil:[ (=)
i=1 j=1

X H fiH (—n)
i=1 j=1

A=exp(Luo+n puL+Ngur)

(31)
where we have reintroduced the factaf that was omitted
as of Sec. Il A. Taking the logarithm, dividing by, and sendingd- to infin-
As a check on the Bethe ansatz, we determined the eigeiity gives the free energy per trimer in the thermodynamic
values of the transfer matrix for small system size(bsute  limit,
force) numerical diagonalization; the same eigenvalues were
obtained by numerically solving the BAE’s. Q(pL PRI 01T+ M5)

=®(pL,pr; L, PR) —PL ML~ PRUR™ Mo>
IV. THERMODYNAMICS

We are interested in the behavior of the model as a funcWhere
tion of the sublattice densities, that is, the canonical en- . ng 12
semble. In order to set up a transfer matrix, we have passed D(pL,pr; L, dr)=— lim— |H[H §.H (—7)
to the grand canonical ensemble, which is controlled by sub- N S !
lattice weights(or chemical potentia)sinstead of sublattice (32

densities. In this section it turns out that the transfer matrix

leads to a semigrand canonical ensemble. It is controlledt is the free energy in a semigrand canonical ensemble
partly by densitiegessentially the two conserved quantifies where the numbers of trimers on the different sublattices
and partly by chemical potentials. We describe the Legendrenay vary but are subject to the constraints imposed by fixing
transformation from this ensemble back to the canonical enthe particle densitiesee Eqs(5) and(6)]. In order to do the
semble. We also look into the symmetries between the sul-egendre transform to the canonical ensemble, the deriva-
lattices and how they appear in the semigrand canonical enives of () with respect toug,uq,...,u5 have to be taken.
semble. This gives the ensemble average densities
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3 1 E10) 3 1 b 1 renumbering the sublatticés-i —2 (mod 6. The sublattice
Po=| = 5T 5PR s tl=5t5m0 Jdn AP densitiesp] in the new numbering are related to the densities
p; in the old numbering by
1
—zPrtL (33) po=p2, P1=ps, e€tc.

and analogously for the chemical potentials. From this,
one computes

<+1 1 )&cb ( 3 1 )acb 1 1
P1= PR
2 2

aTS|_+ toT 50 m_ZPL""ZPRa
39 pL=2-pr, PrR=1-pr, S =—dLtdr, ¢r=

11)&@(11)0@1 1 — L.

P2=| T 5+ 5pR MJF “5t5hL m—zmﬁzpm o o o .
(35  Similarly the model is invariant under reflection in a hori-
zontal line. The corresponding sublattice renumbering is
P3=| — 5 5PR|5 T ( —35 —pL>—+ ZPLT PR,
2 2o 2 2749 4 4 ) , ' ,
h = (36) pPL=2=pL, PR=27PrR, PL=dL, ¢r= PR
1 1 9P 1 1 ab 1 1 The model is also invariant under reflection in a vertical line.
P4 (— -+ —pR)—+<+ -+ —pL)—+ —pL— = PR For the line passing through sublattices 0 and 3, the renum-
2 277)dd 2 277]igr 4 4 bering isi— —i (mod 6. Obviously this is nothing but in-

(37) terchanging left and right, so

31 oD 11 b 1 1 ' , , ,
p5= —I————pR i o =~ 5PL _+_pL__pR1 PL=PR: PRTPL: ¢)L:¢Rv ¢R:¢L'

2 2" ad 2 2" o 4 4

(38 Together these three transformations generate a group of or-
. , . der 12. In Sec. VIC we shall find four “families” of points

In _Sec. IIA it was seen that because the_ sublattice densitigg e parameter space where the entropy of the model can be
satisfy two constraints, four of them are independent. Equagompyted exactly. These four families are related by symme-
tions (33—(38) EXpress the sublattice densities in terms Oftries from this group. Finally, the model is invariant under
only four quantities, namely,p, pgr, dP/d¢, and  gome rotations. As an example, consider the rotation over

d®/d¢r. Therefore these four quantities must be indepeny /3 ahout an up triangle of the lattice. The odd sublattices
dent and the sublattice densities given by E@3)—~(38) 1 renumbered: 2351 and the even sublattices re-

must satisfy the two constrain($) and(2). This can also be iy invariant. This does not give a simple transformation of
verified by direct computation. The entropy per trimer is oL, pr, b1, and g because in the definition of these four

quantities the direction in which the transfer matrix acts

[62]

s( )= —Q- 2 plays a special role. Rotgtions do not preserve this direction,
Po:P1s--P5 . Pk in contrast to the translation and the two reflections described
above. The symmetry group generated by all these opera-

P P tions is of order 36.

:—(D+T¢)I_¢L+m¢|q. (39

. . . V. INTEGRAL EQUATIONS
It is remarkable that the chemical potentialg, w, , andug

that occur in the expressio81) for the eigenvalue have  In Sec. lll two sets of BAE's were derived. These equa-
disappeared in the Legendre transformation. As a consdions can be solved numerically for system dizep to a few
quence® and hence the densitigg,p;,....p5s and the en- hundred, say. This can be done essentially in the full param-
tropy S are now functions of four parameters: the particle€ter space(The regions where numerical complications arise
densitiespL and PR and the potentia”ike quantitie$l_ and can be mapped to regions without such difficulties by means
#r. These are just the parameters that govern the BAE'§f symmetries from Sec. IV B.We, however, want to get

(29) and (30). This agrees with the fact that the canonical@nalytic expressions for the physical quantities of the model
ensemble also has four parameters. in thermodynamic limit. In the present section the BAE's in

the thermodynamic limit are turned into two integral equa-
tions for two complex functions. These functions are multi-
valued and their monodromy properties are obtained from

For the reference state of the BA sublattice 0 was choserihe integral equations. The functions are then determined
Since the model is invariant under horizontal translationdrom their monodromy and analyticity properties. In the next
over a single lattice edge, sublatticé® 4) could have been section these functions will be used to compute physical
chosen instead. The original situation can be regained bguantities of the model.

B. Symmetries of the parameter space
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A. Derivation 2
We shall now in the usual fashion derive integral equa- .
tions from the BAE’s(29) and(30). The logarithmic version . .
of these BAE’s is . , ‘.
LF (&)=(n_+ng—1)mi (mod 2mi),  (40) ) .
LFR(7)=(L+ng—1)mi (mod 2mi), (4D - | L
'_2 -1 0 1 . 2
where . .
1 nR * S . )
FL(z):Inz—EjZl [In(z— ;) —In(z+ 5, H)] ) .
1 nR L] . )
+o+— > Iy, 2
L&

FIG. 7. Distribution of the BAE roots for the largest eigenvalue.

1M The & are on the right, they on the left.(The parameters have the
Fr(z)=Inz— E;l [In(z—§&)—In(z+ gi’l)] values¢, = —0.46, pg= —0.653,n, =15, ng=18, andL=30.)
1 the same equations it is easily computed tht(z) and
+ P+ _E Ing&. (42) zfx(2) are invariant under— —z~ . Therefore we substi-
L= tute
The derivatives of these functions are denofg¢z) and z—71=7% (46)

fr(2), respectively.

For the understanding of the structure of the solutions t@nd define
the BAE’s we rely on numerical computations for finite sys-
tem size. For many values of the parametgrs pr, ¢, gu(2)=zf(z) and gr(2)=zfr(2). (47)
and ¢ the BA roots for the largest eigenvalue show the 1
following features. The root§; and 7; lie on smooth curves e Wo branch cutéf and —H "= of f, (2) then collapse to
in the complex plane. When the system size becomes larg@,single branch cut of g, (2) and similarly forfg(z). Equa-
these curves tend to well-defined limit shapes. These limitions (44) and (45) become
curves will be calledE andH. The setg &} and{7;} (and

hence also the curves andH) are invariant under complex 5)=1+ LJ' 1 Vds 48
conjugation; this implies that 9.(2) 27i .;;;—zgR( mdn, (48)
fL(z")=f(2)* and fr(z")=fr(2)". (43 1 1 .
gR(2)=1+—.f;fgL(§)d§- (49)
The curve= crosses the positive real axis wheréhsrosses 2mi JEE—3

the negative real axis. Figure 7 shows the distribution of the
roots for the largest eigenvalue in a given sectorng. The functionsf (z) and fg(z) and hence alsg, (2) and
By means of the same arguments as used by Kaltigih gr(2) contain all the information about the BA roofs and
for the square-triangle tiling, it can be derived that in the7; that is needed to compute the densitigsand pg, the
thermodynamic limit the derivativef (z) andfg(2) satisfy ~ Phasesp, and¢r, and the semigrand canonical free energy
the integral equations .
The integral equation§48) and (49) are very similar to
the equations obtained by Kalugirl6] for the square-

11 1
fl(z)==+5— (7]—

2 om )il =2 T Tz fr(n)dn, (44) triangle random tiling model. He tackles his equations by
exploiting the monodromy properties of the functions. We
1 1 1 1 shall use the same method for our integral equations, closely
— 4= - following Kalugin's argument.

) ) B. Monodromy and analyticity properties
Let b, andbg denote the end points in the upper half plane _ _
of = and H, respectively. Then the integration contdgr In the remainder of this paper we shall, unless stated oth-

runs fromb} to b, while H runs frombg to b . From Egs. erwise, consider the special case that the end pointsf)@nd
(44) and (45), it is seen thaff (z) has branch cut$l and b} of  coincide with the end pointbg andb of H, and
—H ™! and thatfg(z) has branch cut& and—="!. From that the contours do not meet in other points. Following the
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where the last integral is over some contour running from
to 0, is finite. Sincedz/dz remains finite and nonzero far
—8r 8L~ 8Rr near 0 ore, and
8L A )
- dz 6(b—b*)t° [ t°, if t—0
8r p t =
2 ! dt  (t°-1)? t=7, if t—oo,
8L
878 4 it follows thath(t) has, at most, singulariti¢s ® att=0 and
s t> att=o. Hence, the 1-form
8Lt 8r
ek o 7 9(2)dz= h(t)—dt (52
8r
8L is nonsingular at=0 andt=cc.
—8Lt8r 8r
C. Calculation of g(2)

. In the previous subsection it was shown that the 1-form
FIG. 8. The complex plane. The contours corresponding=o (52) is nonsingular at=0 andt=c. The only singularities
and A divide the plane into sectors that correspond to differentjt can have are second-order poles at the zgrds, ... tg of
branches of the functiog(2). The shaded regions correspond to {61 (These are the points in theplane corresponding to

g.(2) andggr(2). (The interest of this picture lies in its qualitative 5_ ) Therefore it can be written as
features, but it was actually obtained from a numerical solution of

the BAE's. The parameters arg, =—0.46, ¢g=—0.653, n_ dz 6 M S
=152, ng=186, and L=200. These values correspond fo g(2)dz=h(t )dt dt—E (FJFW}O“
:2ie—0.05l) h=1 k k

argument given for the square-triangle tiling by Kalugin The coefficientsc ands, are given by

[16], one can then show that the functiopgz) and ggr(2)

are different branches of one functiag(2), which is a rv=Res_, h(t)d—zdt=Re§:mg(2)d‘z
single-valued functiom(t) of the variable K dt

2_6 1/6 and

t=t(2)= ~ . (50 R
z—b* dz
sk=Re$:tk(t—tk)h(t) adt

Kalugin’'s argument leads to an explicit expression for each
of the branches o§(2)=h(t) in terms ofg, (2) andgr(2). =[(t—t)2]i-,Res-..2 'g(2)dz,

These expressions and the location in thplane of the

branches are shown in Fig. 8. In particular, the branch conwhere the appropriate branch @f2) is to be taken.

taining the point=e~ """ is gg(2). The residues Res..g(2)dz and Res_..2 1g(2)dz still
It follows from Eq.(48) thatg, (2) is analytic everywhere have to be computed. From Ed48) and (49), one has

except on the branch cit. Similarly, gr(2) is analytic ev-
erywherAe except ofE. In particular, it is analytic on the Res_..g, (2)dz=— i-ngR( mdy=R,,
contourH, except perhaps at the end points, as these lie also 2 Jiy

on =. It then follows from Eq(48) thatg, (2) remains finite 1

if z approaches a poirthot an end pointon its branch cut Res_..gr(2)dz=— o f gL(HdE=Rg,
H. An analogous statement holds f@k(z). To summarize, m JzE

g.(2) andgg(2) are finite everywhere except perhapsbat

and b*. Thereforeh(t) is analytic everywhere except per-
haps at=0 andt=oc. Becauséh(t) is single valued, it can Res_..2 g, (2)dz=—1,
only have power singularitie@vith integer exponent Now

and

Res_.2 'gr(2)dz=—
1

pL:_-j_fL(Z)dZ . .

2m )z The residues for the other branchesggf) follow directly
o . from the expressions in Fig. 8. They are listed in Table Il. It

_ 1 5 d_z 5_ 1 d_z d_z follows from Egq.(43) that the integralfk, andRg are real.

- [ .9.(2)=xdz - | h(t)=x =—dt, (51) o .
dz dz dt Combining these results gives, after some algebra,
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TABLE Il. The poles and residues of(z)dz

k ty g Res_.g(2)dz Res_.z 'g(2)dz
1 ems a R -1
2 —e ™R —0r —Rg 1
3 -1 “OL70r —R —Rg 2
4 —e™B -0 ~R_ 1
5 e ™8 o] Rr -1
6 1 gL+ 9r R, +Rg -2
6 5\ —1
. I Sk dz
= +— I
9(2) Z [t ty (t—tk)Z](dt)
=(1-2C)t+(1-2C*)t 1+ C(t+t™°)
+C*(t1+15) (53
with
1 1 . .
C=—+ —A[em/ﬁ}RL_e— mlsRR]-
6 2v3Iimb
We shall now argue in the generic caget2i, that C

=0. From Eqgs.(40) and (41), the curvesZ andH are de-
scribed by REf (2)dz]=0 and Rgfg(z)dz]=0, respec-
tively, so the corresponding curves in the@lane are both
solutions of

&

Note thatzanddz/dz are not single-valued functions bbut
the two branches of

g(2) dzdz

7 azdt (54

1dz

1
z+z"

1
R~
5+

zdz 4
differ only by a sign, which does not influence E§4). The
two different solutions of Eq(54) corresponding t&= and
H, respectively, meet at=0 (and att=x), so at these
points the differential equation admits multiple solutions
Whent—0

b—b*

9(2) dz dz prpT[CH(1-CHt'+od)dt,

7 dzatdr*

b+

so this implies thaC=0.

We shall now argue in the special cdse 2i thatC=0.
Whent—0
(Z) -3 *
f(z)dz= - dt B[Ct 3+ (1—C*)t+0O(t3)]dt

d d

(and similarly whent—«). The finiteness of the integral
(52) (or its analog forpg) implies thatC=0.
Now Eq. (53) becomes

PHYSICAL REVIEW E 63 066122

g(2)=t+t 1. (55)
The functionsg, (2) and gg(2) are obtained by taking the
appropriate brancheg (2) and tg(2) of t(2). The branch

t, (2) is determined by, («)=e™" and the fact that it haid
as its only branch cut. Similarlytg(2) is determined by

ta(®e)=e~ ™" and the fact that it ha& as its only branch
cut.

VI. CALCULATION OF PHYSICAL QUANTITIES

In Sec. IV the relation was established between the ca-
nonical ensemble we are interested in and the semigrand ca-
nonical ensemble that arises in the BA from Sec. lll. In Sec.
V, BA information was encoded in two complex functions
satisfying a set of integral equations. These functions were
then solved from those equations. In the present section the
physical quantities occurring in Sec. IV are extracted from
the complex functions determined in Sec. V.

A. Calculation of p_, pr, ¢, ¢dr, and ®

From Egs.(47) and(55), f| (z) andfg(z) are both given
by

t+t71

f(2=——.

(56)

with different branches of. It was claimed in Sec. V A that
the BA parameterp, , pr, ¢, and ¢ and the semigrand
canonical-free energ® can be computed from the functions

f_(2) andfr(z). These functions depend on the pdintThe
particle densityp, was already computed in E(G1),

1
PLImLfL(Z)dZ- (57

Becausef| (z) is analytic, this integral does not depend on
the precise shape @& but on its homology only.

Next ¢ is calculated. Sincé (z) is known, the function
F.(2) is determined up to an integration constant. The real
part of this integration constant is fixed by Rgb, ) =0, Eq.

*(40). From Eq.(42), one has

REFL(2)+F (-2 H]=2¢,.

It is now easy to compute that

on (58)

1
——Ref L fL(z)dz
2 L

From Eq.(32) the free energyp equals— (2, +2g) with

= lim ——2 In| 7]

L*)OC

and analogously foEg. Using Eq.(42), one calculates
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[

1
2. =RdF. (2)—In z]|5°=ZRefo

1
(f,_(z)— E)dz.
(59)

In Egs.(58) and(59), the integral again only depends on the
homology of the integration path, not on its precise shape.
The real part of the integral even does not depend at all on
the path chosen between the integration end points, but the
imaginary part does. This is because the indefinite integral ,
(42) is a sum of logarithms with real prefactors, and distinct
branches of a logarithm differ by a multiple of2, which is
purely imaginary.

Replacing in Eqs(57), (58), and (59) all subscripts L
with R and in Eq.(57), the integration contouE with H
yields expressions gbgr, ¢r, andg as integrals of func-
tions involving fx(z). These integrals fop, , pr, ¢, ¢r,
>, and3 are of the form[ydz where the pointsy, 2) lie
on an algebraic curve of genus 5. Therefore the indefinite
integrals cannot be expressed in terms of “standard” func-
tions. This does not prove that the definite integrals we need
cannot be expressed in terms of standard functions, but it
seems unlikely. Of course they can be evaluated numerically. FIG. 9. Four possible configurations of the curg@sandH. The

dashed curved are 2t and—H™1. In cases | and IVE andH
B. Calculation of d®/ ¢, and d®/d dr have the same end points. In cases Il and&land —H~! share

R . end points, as dél and —= 1.
The Legendre transformation in Sec. IV A involves the

derivativesg®/d¢ and 9®/d¢g. Unfortunately, we have 5nq mc were evaluated numerically for some chosen value

not been able to comput as a function ofp., pr, ¢L, o b, and from thisd®/d¢, and 9®/J¢pg were calculated.

andég for all values of these arguments. Instead, we have 'r.JI'hese derivatives were also computed from numerical solu-
Sec. VI A computed these parameters and the free energy in \ : :
ions of the BAE's for large system sizZe by numerical

the case that the curveS andH close, as a function of their giferentiation. The results from the two methods agree,
common end poinb=Db =bg. In order to still obtain the which support the perturbation analysis of the Appendix.
derivativesd®/d¢, and dd/dpg, we resort to a perturba-
tion analysis. The details can be found in the Appendix; here
we only give some results. An infinitesimally small complex ) ) ) -
parametelC describes how far the curves open up. The ther- [N the previous two sections several physical quantities
modynamic parameteys ,pr, ¢, , g and the free energpp ~ have been expressed as integrals of functions involijig)
then are functions ob and C. If all their first-order partial ~andfr(z). These integrals depend on the paramitand on
derivatives are knowny®/d¢p, and 9d/d¢pg can be found the topolggy of the curves andH, but not on their precise
by applying the standard coordinate-transformation formulshape. Ifb#2i there are two distinct points in theplane
to the transformation between coordinatesbREn b, ReC, corresponding td, sayb; andb,. The end points o
and ImC on one hand angd, , pr, ¢, and¢r on the other.  could beb; andb? or b, andb? , and the same holds fét.
The derivatives with respect to Reand Imb can be ob- Therefore one can expect at least four different configura-
tained immediately from the integral expressions in Sections for one and the same valuefmfIn order to determine
VI A. For the derivatives with respect to Reand ImC, the  what these four configurations actually are, we first guessed
perturbation analysis is needed. It tells that to leading ordewhat they might look like. Then we chose some particular
in C the parameterg,,pr, ¢ ,¢r and the free energP  value ofb (close to 2) and for each of the four expected
=—(Z_+2g) are again given by the integral§7), (58),  cases computed the value of the particle densitieand pg
and (59), and their analogs involvingr(z), wheref(z) is  and the phaseg, and¢g. The BAE's were solved numeri-
now given by cally for these parameter values, for large system siZehe
1 5 %45 a1 resulting curves followed by and » display indeed the pre-
_ tCP-pHCI(E -t (60)  Supposed configurations. These curves are shown in Fig. 9.
z Note that without first guessing the configurations we would
have had no way to find the values of the parameigrsor,
This yields integral expressions for their derivatives with re-4 and ¢, so there would have been no BAE’s to solve
spect to R&€ and ImC. numerically.
The expressions thus obtained for the partial derivatives The numerical results show that these four cases are re-
of pL, pr, ®1. Pr, and®d with respect to Re, Imb, ReC,  lated by the symmetries of the parameter space discussed in

H

C. Configuration of E and H

f(2)
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TABLE lll. The regions in parameter space of the sublattice densities for cases |-V -aiw .|

by | |l Reb>0 Reb<0

>1 >1 Po=P2=Pa I P1=>P5=P3 I P5=>p1=P3
>1 <1 P1=P3=Ps I Po= P2~ Py n’ P4=Po= P2
<1 >1 P1=P3=pPs 1l P2~ Po= P4 i P~ Pa= P2
<1 <1 Po=P2=Ps \% P5=P3=P1 v’ P1=P3>Ps

Sec. IV B. They are in a single orbit of the subgroup of order Cases I-1V correspond to different regions in the param-
six generated by the horizontal translatievhich is of order  eter space of sublattice densities, as given in Table Ill. These
threg and the product of the reflection in a horizontal line foyr cases are defined for Re-0 by Fig. 9. The mirror
and the reflection in a vertical ||n@Vh|Ch is of order tWO |mages(w|th respect to the imaginary aX|9f the Configu_
For the remaining two members of this orbit we have not .. .« in Fig. 9 define case$IV’ for Reb<0. For ex-
been able to numerically solve the BAE's. In these cases thﬁmple the locus oF (H) for case | is the mirror image of
Earticle densities are fairly high_; We Suppose that t_h_e CUNVeHe Ioéus ofH (£) for case I. Table Il also lists the regions
= andHA would crass or otherwise violate the condition thatin the parameter space of sublattice densities corresponding
= andH only share their end points. to the cases'-IV'.
Once this symmetry is known, @umerica) calculation
of the physical quantities needs to be carried out only for one
of the four cases I-IV. The values for the other three cases E. Summary
are then obtained at once by application of the symmetry In the foregoing section an exact solution of the trimer
transformations. model was derived. Because the results are obtained in the
course of a long derivation, we here provide a guide through
D. Calculation of the sublattice densities and the entropy them. The final result is the entropy as a function of six

In Sec. VI A the physical quantities, , pg, ¢, . dg, and sublattice densitiep; defined in Sec. Il A. Complete cover-

o . - ge of the latticg1) and a further geometric constrai(f)
® pertaining to the se_mlgrand canonical ensemble were ca derived in Sec. Il E leave four independent parameters. A
culated from the functionf, (z) andfg(2). In Sec. VB the full analytic solution in the thermodynamic limit is obtained
derivativeso®/d¢, and 9P/ dpg were computed. Substitu- in a two-parameter subspace
}ion of these results ri]nto fglrmule(%S)—(SS) andd th_(39) The four-dimensional parémeter space is described by
rom Sec. IV A gives the sublattice densities and the entropy : ) )
physical quantities for the canonical ensemble. This was perggw variablesp,, pg, ¢, and ¢g. The free-energy func

i ) A n of the ensemble with these parameters is denotedt.by
formed numerically fo_r a particular value of The resglts The sublattice densities are expressegin pr, I®/I¢, ,
reveal thalpo=p,=p, in cases | and IV an@d,=ps=ps in  andgd/a¢ps in Egs.(33)—(38); the entropy is given in terms
cases Il and Ill. From the expressiof83)—(38) for the sub- s D, ¢, br, IPIad,, andad/ddg in Eq. (39).

lattice densities, this is equivalent to The free energy is written as a sub=— (3, +3g). In

9 I the solvable subspace the quantitjgs, ¢, , and >, are
1 1 i i
—=5(2+p_.—2pr) and —=5(2—2p_+pR) expressed as contour integrals of a functigifz) in Egs.
dpL IPr (57)—(59). Analogously, the quantitiesg, ¢r, andy are
(62) integrals of a functionfg(z). The integration paths in the
in cases | and IV and integral (57) for p_ and its analog fopg are contour& and
H, respectively. These contours are symmetric under com-
EY oP plex conjugation. Their end points in the upper half plane are

N s(—pLt+2pr) and Fy 5(2p.—pr) (62  denotedb, andbg, respectively. These satisfy the equality
- R b, —b; '=bg—bg'=b. For each value of6b (exceptb

in cases Il and Ill. One might hope to derive these expres=2i) this equation has two distinct solutions for and for
sions analytically from the results of Subsection VIA andbg resulting in four configurations 1-IV oE andH shown
VI B. We have not tried this because it would involve ratherin Fig. 9. The derivativeg®/d¢, andd®/J¢pg are given by
cumbersome relations among integrédg), (58), and (59). Eqg. (61) in the cases | and IV and by E(2) in the cases Il
Once the expressior(61) and(62) have been accepted, the and Ill.
perturbation analysis approach from Sec. VIB becomes su- The functionsf, (z) andfg(z) are different branches of a
perfluous. Substituting them into Eq83)—(38) and Eq.(39)  function f(z). The branch cuts of (z) areH and —H !
yields new expressions for the sublattice densities and thendfg(z) has branch cutg and—Z 1. In terms of a new
entropy. The expressions for the sublattice densities are polyariablet, defined by Eqs(46) and(50), the functionf(z) is
nomials in the particle densitigs and pg, the expression single valued. It is given by Eq56), while the functions
for the entropy also contains the phasgsand ¢g and of f (z) and fr(z) are recovered by selecting the appropriate
course the free energ. brancht, (z) andtg(z) of t, specified at the end of Sec. V C.
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VII. PHASE DIAGRAM 0.3
In Secs. IlA and Il E, a linear and a quadratic constraint S
on the six sublattice densities were derived. In this section o2k

we first show that these constraints imply a breaking of the
symmetry between certain sublattices. This symmetry break-

ing suggests that a phase transition takes place when the total 0.1
densitypy=p;+ p3+ ps of down trimers is increased from 0

to 1. Next we compute the entropy as a functiorpeffrom

0.0

the exact solution of th?s model. From thi's entrqpy the phase 0.00 025 0.50 075 100
diagram of the model in the parameigf is obtained. It is Py

also formulated in terms of the chemical potential of the

down trimers instead of their density. FIG. 10. The entropy per trime® as a function of the total

density of down trimergy=p,+p3+ps. It is obtained from the

A. Symmetry breaking exza;ctl solution in the special caggb) for py<3 and similarly for
pPv=2-

The linear constraintl) on the sublattice densities can be

potpatps=1l-py, (63 exists when 23—3<py<%. Because of symmetry, Egs.
(65) and(66) are stationary points of the entropy. It is tempt-
ing to believe that Eq(65), being the more general of the
(64)  two most symmetric cases, corresponds to the maximum of
the entropy. By numerically solving the BAE'’s, the entropy
with equality if and only ifp;=p3=ps=3pyv. If pyis small  of the model can be computed to high precision. Such cal-
(to be precise, smaller tharw2—3), it follows from Egs. culations confirm that fopy<3, the entropy takes its maxi-
(63) and (64) that one ofpg, p,, andp, is larger than the mum at the symmetric cagé5) of the sublattice densities,
other two, saypo>p,,ps. Thus the symmetry between the hence within the solvable subspace.
sublattice 0, 2, and 4 is broken. If there is no further sym- As seen in Sec. VID for the solvable subspace one has

and from the quadratic constrai(®) one has

2
PoP2T P2Pat P4PO=3pT

metry breaking them,=p, andp,;=p;=ps, SO po=p2=pa4in cases | and IV qnd1=p3=p5 in cases Il and
o B Ill. Consider case Il and takb on the imaginary axis be-
Po=P1=P3=P5= P2~ P4 (69 {ween 0 and B The contoursy andfi then lie symmetric
By the same token the symmetry between the sublattices ¥Vith respect to the imaginary axis, g =pg and hence,
3, and 5 is broken whepy is close to 1. Whempy is in-  — P4 Thus this is precisely the symmetric cd$). There-

creased from 0 to 1 the following seems to be the simplesior® We have obtained the entropy as a functiorpeffor

possible scenario. Apy=0, sublattice 0 is fully occupied Pv<z- The entropy forpy>3 follows immediately by the
and the other sublattices are empty. The six sublattice densfyMmmetry between up and down trimers. This entropy can
ties change continuously withy, and Eq.(65) holds up to  also be obtained by considering case | and takirgdpove 2
pv=1%. There the six sublattice densities are all equa}.to 0On the imaginary axis. The resulting entropy is shown in Fig.
Then one of the odd sublattices, say 3, takes over and ~ 10. When in case IIp is not taken on the imaginary axis
between 0 andi2p,# p,. Figure 11 shows the entropy as a
P3P0~ P2= P4~ P1= Ps

0.25 . | | . .

S ./\

B. Entropy for py 020 .

all the way topy=1 where all trimers sit on sublattice 3.

In the previous subsection the occurrence was suggested
of a phase transition whepy is increased from 0 to 1. For 0.15
the study of such a phase transition it would be helpful to
know the entropy of the model as a function e§=p;
+p3+ps. However, what we have computed thus far is the 0.10 ! - -
entropy as a function of all sublattice densities, but only for 03 02 -01 00 01 02 03
a two-dimensional subspace. Therefore, for a gigenthe P2~ P4
sublattice densities have to be determined for which the en- £, 11, The entropy per trimes as a function ofp,— p, at
tropy is maximal. If we are fortunate these sublattice densifixed p,=ps=ps. The end points of the lower curvg{=0.45)
ties happen to lie in the two-dimensional solved subspace. gre determined by,=0 and by p,=0. The upper curve dy
For a givenpy< 3, the most symmetric possibility for the =0.48) terminates whep,= p, and whenp,=p;. At the left end
six sublattice densities is described by Egp). Another pos-  point of the middle curve dy=2v3—3~0.4641) p,=0 and p,
sibility, =po, at the right end poinp,=0 andp,=p,.
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function of the asymmetry,—p, at fixedp,=p3=ps along f
the line determined by the constrairity and (2).
For b=2i, all four cases I, Il, Ill, and IV coincide. The
integrals in Sec. VI A then simplify. The sublattice densities
are all equal toi and the entropy per trimer 1Ssym

=In$v3.

C. Phase transition

Consider a system withy between 0 and. The energy is T/
a convex function ofpy, so the system is thermodynami-

cally unstable. It would separate into a frozen phase with

py=0 and the symmetric phase Wimzé_ However an FIG..12. Schematic replje.sentation of the QOmain-waII st.ructure
interface between these two phases is not possible in tH the trimer model. The Y joints of the domain walls come in two
model. Similarly, a system witpy between% and 1 would  fypes. These are mirror images, f_eaturlng el_th_eﬂ @r ab. In
demix into phases WitlpVZ% andpy=1 if coexistence be- contrast, there is only one type of inverted Y joints.

tween these phases were possible. S . .
Now give a chemical potentigky to the down trimers ©N theKagomelattice [21,22. We shall now briefly discuss

instead of imposing their densipy . The free energy the relation between these three models. , ,
The domain-wall structure of the trimer model is depicted
F=—puvpy—S(py) schematically in Fig. 12. It contains two types of Y joints but
only one type of inverted Y joints. In the square-triangle
takes its global minimum at tiling, there is only one type of Y joints and one type of
inverted Y joints. In the honeycomb lattice three-coloring
0 for uy=—2Sym model, on the other hand, both the Y joints and the inverted
py=1{ % for —2Syy=<py=<2Sym Y joints' come in two types. Hence these three models appear
to be different.
1 for 2Sgym=py The AYY model is a vertex model on the square lattice

derived from an affine Lie algebr@3,24). It satisfies the
Yang-Baxter equatiofi25,2€], so it can be solved by alge-
braic Bethe ansatf27]. At a special value of the spectral
parameter it is the three-coloring model on the honeycomb
lattice [28]. For a suitable choice of the remaining param-
eters, one of the two types of Y joints and inverted Y joints
in the domain-wall network is excluded. In this limit the

We have introduced a different simple lattice model. It isM0del is just the square-triangle tiling. This mapping “ex-
a fluid of particles each occupying three sites of the trianguPlains” the SO'?’l";‘b'“ty of the square-triangle tiling in terms
lar lattice. We distinguish six sublattices of adsorption site<?f that of theA;” model[29].

for the trimers. Full occupancy and a resulting geometric [N @ similar fashion the square-triangle tiling can also be
constraint leave of the six sublattice densities four indepenobtained from the trimer model. When the trimers on sublat-

dent parameters. tice 4 (or 2) are excluded, onéor the other type of Y joint
In the full four-dimensional parameter space the model id0 longer occurs in the domain-wall network. Again the
solvable by the Bethe ansatz. In the thermodynamic limit theéquare-triangle tiling results. The Bethe ansatz for the trimer
Bethe ansatz equations can be reduced to two integral equéodel remains valid in this special case. However, the sub-
tions. In a two-dimensional subspace of the sublattice densftitutions (25 no longer makes sense when=0 (or w;
ties, these integral equations can be solved by means 6f0), so the same is true of the analysis in the subsequent
monodromy and analyticity properties of the functions in-Sections.
volved. Within this subspace the entropy and the sublattice Therefore the three models are connected in sense that
densities are given as integral expressions. both the trimer model and th&$") model contain the square-
The solution is very similar to that of the square-triangletriangle random tiling as a singular limit. It would be inter-
random tiling mode[15,16. In both these cases the solution esting to know if the trimer model, like the square-triangle
is closely connected to the hexagonal domain-wall structurdling, is a special case of some model satisfying the Yang-
of the model. Another solvable model with such a domain-Baxter equation.
wall structure is the three-coloring model on the honeycomb
lattice[20]. In a configuration of this model the edges of the
honeycomb lattice are coloured with three colors in such a
way that the three edges meeting in each vertex have differ- We are grateful to Jan de Gier for many useful discus-
ent colors. Alternatively this model can be formulated as thesions as well as for putting at our disposal his computer
zero-temperature antiferromagnetic three-state Potts modpltogram for numerical Bethe ansatz calculations. We thank

Therefore the model is in a frozen phase fof<—2S,
and for uy>2S,,,, and in the symmetric phase fer2S,,
<uy<2Sgym. At uy=—2Syn, and atuy=2S, there is
coexistence between a frozen and a symmetric phase.

VIIl. CONCLUSION
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Dave Rusin for enlightening us on the question whether the A_p=A’,§ . (A2)
integrals from Sec. VIA can be expressed in closed form.
This work is part of the research program of the “Stichting e want to view the functiomy(2) given by Eq.(Al) as a
voor Fundamenteel Onderzoek der Matdf®OM),” which  perturbation around the functiog() given by Eq.(55),
is financially supported by the “Nederlandse Organisati&ynere 5 is the small parameter. In our notation we have
voor Wetenschappelijk OnderzoéWO). suppressed the dependence of the coefficiagtsn &, B, ,
and Bg.
APPENDIX: PERTURBATION ANALYSIS The functiong(2) satisfies the integral equati¢48). We

- _ investigate how each of the terrtisfrom the Laurent series

In Sec. VIA, the q‘_‘a”t't'e$’t' PR $L, ¢r, ANdP= (A1) of g(2) behaves in this equation. In order to compute
— (2 +2g) were obtained as functions of=b, =bg. For o integral we change frory to 7=t(%) defined by Eq.

the computation of the sublattice densities and the entropyg() a5 integration variable. The resulting integrand is a ra-
the derivatives tional function inr, which we decompose into partial frac-

oD oD tions. Integration yields polynomial as well as logarithmic
(_) and _) terms; some care is required in choosing the branch of the

zon pLordR PR pLoRbL logarithms. Finally we expand in powers 6f obtaining

are also needed as functionsbofThese cannot be calculated i 1 Pd7

by differentiation of thed already obtained, because varia- 2mi Janp—2

tion of ¢ (¢r) at constanp, , pg and ¢ () breaks the 1 b—6q

condition b, =bg. Therefore in this appendix we infinitesi- —tP—tP+ i[ S R (tsa_q)0-6a

mally relax that condition and compuig , pr, ¢, ¢r, 2mi | g=== P—6q

and®=— (3, +2R) to leading order in the infinitesimal re- % p—6g

laxation parameter. X +> PR (teq_l)geqp] (A3)

When the curve& andH do not closeg, (2) andgg(2) a-1 P—6q

are no longer single-valued functions of the variabl€alu-
gin [16] has provided a perturbation analysis for the analofor each terntP in the Laurent seriegA1). Heret in the RHS
gous situation in the square-triangle random tiling model. Itcorresponding t@ in the LHS is in the sector containirtg,
leans heavily on the understanding of the structure of théhat is, the sector whegyz) equalsg, (2). Comparison with
Riemann surface of the functions. Our approach does ndhe integral equatioi48) shows the following. The terrt?
require such knowledge and is more systematic. in the RHS of Eq(A3) exactly matches the term (2) in the
Although g, (2z) and gr(2) are no longer single-valued LHS of Eq.(48). The inhomogeneous termt} in the RHS
functions of the variablé, one can still perform the variable of Eq. (A3) corresponds to the inhomogeneous term 1 in the

transformation50). The end point®, andb} of £ (bgand  integral equation. The other terms in the RHS of &) are
6;; of F) then correspond to point, and dachl (dg and unwanted”; the powers of they involve are multiples of 6.

e o~ Because the Laurent seriésl) satisfies the integral equa-
*—1

dg ") in thet plane. The pomb in Eq. (50) can be chosen tion (48), the inhomogeneous termst? from Eq. (A3)
such thatd, |=|dg|; we write

counterbalance the inhomogeneous term 1 of the integral

d,=B.6 anddr=pg6, equation,

with & real and positive anfi3,|=|Bg|=1. The curves cor- S A =1
responding t& andH divide the annuluss<|t|< &% into pe NPT
sectors, much as in Fig. 8. We get a single-valued function

h(t)=g(2) in this annulus instead of in the whoteplane.  [which means thag, («)=1], and the unwanted terms can-
Since it is analytic in the annulus it can be expanded as &€l,

Laurent series in,

(A4)

® p
= > Pr SPA,=0, for all <0,  (A5)
g@=h(t)= 3 AP, (A1) p=== P64
p=—x
Figure 8 shows thath(t)+h(—t)=0 and that h(t) E R_s5PA =0 for all a>0. (AB)
27il3 i -6 P q
+h(te?™)+h(te" 2% =0, so thatA,=0 unlessp==*1 p=—= P—0(

(mod 6. From Eq.(43) one has
[Due to Eq.(A2), the equations fog and —q are equiva-

h(t* "1 =g(2*)=g(2)* =h(t)*, lent.] The functiong(2) also satisfies the integral equation
(49); this leads to another similar set of conditions on the
so the coefficient®\, satisfy coefficientsA,, .
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49) suggests that fop, and fixed, the coefficient®A =— tP— —dt.
(49) sugg BL Br P pL 2 p;w hefol_1 g5t 521 4 dt
(A10)

The form of Egs.(A5) and (A6) and their analog from 1 = o BLo 1 dz
A gh f

should be power series i

A=A + AV S+ AR 52+ (A7)
) ) N h) For eachp andh we determine the order ia of the contri-
We would like to determine the coefficientg” . bution. Whent—0 ort—oo, the integrand is proportional to
Whent approaches the boundary of the annultis»> dor  p+5 andtP-7, respectively. Hence the integral is bounded,
|t|— &7, the unperturbed functiog(2) given by Eq.(55  of order 0 in g, that is, for|p|<5, logarithmic in for |p|
becomes of the orded. It seems reasonable to assume that_g and of order 6 |p| in & for |p|=7. Note that the coef-
the termsAt" of the perturbed functiog(2) do not grow ficients A(" with [p|=6 are zero. Letn denote the order in
faster than this, so the coefficient§” with h<[p|—1 must 5 of the integral. The order i@ of the whole contribution is
be zero. h+m,
Consider Eq(A4) and its analog fron{49). Substitution

of the power serie$A7) yields, after rearrangement of the Ip| m h h+m
terms,
1 0 0 0
- " 1 0 4 4
s tPAV | =1 for k=1,5. (A8
hgo (D—%H—l) K (A8) 1 0 =5 =5
. 5 0 4 4
The 6° part gives 5 0 =5 =5
LAD+ 1A% =1, for k=15. =7 6=Ip| =lpl-1 =5

The unique solution of these equations reproduces the unper- , .
turbed functiong(2) given by Eq.(55). For 1=h=3 the &" Thereforep, in Eq. (A10) has aé° contribution from the
part of Eq.(A8) gives unperturbed part in the RHS of EGA9), a 6* contribution

from the part involvingC and C*, and contributions of
t AV +t, P AM =0, for k=1,5. higher order ins from the parts collected in th®(5°) term,
SO
This implies thatA{" andA") are zero. The>* part of Eq.

(A8) gives 1 (B 1 _g
4 a4 n n pLZT 71[t+t +C(t —t)
tAY + AN AN +1, PAM =0, for k=1,5. m Jps
These equations have two linearly independent solutions one L Cr (5 -] 1 d—AZdt+O(55)
of which satisfies Eq(A2). Substituting these results into J72+ 4 dt '
Egs. (A7) and (Al) yields
g(2)=t+t 1+ Ct >—t)+C*(t5—t" 1)+ O(5°), In the RHS the integration limits may be changed from

(A9)  B.6 'andB, Stox= and 0 as this makes a differencg s°).

) Transforming back ta as integration variable then gives
where we have written

4 4
A%s*=C and A" 5'=C*. =5 TGt =)+ CH (1=t H]dz
Note that Eq(A9) can be written in the forng53). We have -
used Egs(A5) and (A6) only to come up with the series +0(8°),
expansionA7). These equations would be needed if the co-
efficientsA{" with h>4 were to be determined. Knowledge whereZ(® denotes the unperturbed+0) contour. Hence
of these coefficients would yield a solution to the integral, is given to leading order i€~ 5* by Eq.(57) where now
equationg48) and(49) also for a finite opening betweefn f(z) is given by Eq.60) instead of Eq(56), and integration
and bg. Unfortunately we have not been able to calculateiS over the unperturbed contour. Note tigatand Sr do not
these coefficients, but fortunately they are not needed beaccur in this expression. Similar arguments show that fully
cause the present purpose is only to compyte pg, ¢,  analogous results hold ferz, ¢, ¢r, X, andZg: Up to
¢r, andd®=— (3 +3p) to leading order irv. O(&°) they are given by the integral57), (58), and(59) or

As our aim is to calculate the quantitips, pr, ¢, . ¢r,  their R analogs, witHf(z) given by Eq.(60). Therefore we
and @, we substitute Eqs(Al) and (A7) into the integral have now obtained these quantities to leading order, namely
expressions from Sec. VIA. For E¢57) this gives, after 5%, in the paramete# that describes the infinitesimally small

transforming tot as integration variable, openingb, — b~ 8° between the end points & andH.
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