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Bethe ansatz solution of triangular trimers on the triangular lattice
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Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherland
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Recently, a model consisting of triangular trimers covering the triangular lattice was introduced and its exact
free energy given. In this paper we present the complete calculation leading to this exact result. The solution
involves a coordinate Bethe ansatz with two kinds of particles. It is similar to that of the square-triangle
random tiling model by Widom and Kalugin. The connection of the trimer model with related solvable models
is discussed.
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I. INTRODUCTION

The dimer problem is one of the classic models of sta
tical mechanics. A dimer in this context is a particle th
occupies two neighboring sites of a lattice. In the dim
monomer model, dimers and monomers~particles occupying
one lattice site each! are placed on a lattice such that th
cover all sites, without overlap. Equivalently the monom
can be viewed as empty sites; the lattice is then partly c
ered with dimers. This model was introduced to descr
diatomic molecules adsorbed on a substrate@1#. Attempts
have been made in vain to solve this model exactly, tha
to calculate its free energy. The special case that there ar
empty sites~monomers! is now known as the dimer problem
There the dimers cover the lattice completely and with
overlap. This model has been solved for planar lattices in
pendently by Kasteleyn@2# and by Temperley and Fisher@3#.
Their solution is based on the possibility to express the p
tition function of the model as a Pfaffian. For many plan
lattices, the dimer problem can also be solved by mean
the Bethe ansatz. On the honeycomb lattice, for exampl
can be formulated as a five-vertex model. This is a spe
case of the six-vertex model whose Bethe ansatz solutio
well known @4–11#. A review of the dimer problem is given
in @12#.

Inspired by the solvability of the dimer model, we co
sider lattice coverings by trimers. A trimer is a particle th
occupies three lattice sites. We only consider triangular
mers, which live naturally on the triangular lattice. As in t
dimer model, we require that these particles cover the lat
completely and without overlap. Thus every lattice site
covered by precisely one trimer. Figure 1 shows a typi
configuration.

As will be shown in Sec. II B, the configurations of th
model have a structure of domains separated by dom
walls. The domains are hexagonal and the domain w
form a honeycomb network. Similar domain-wall structur
are used to describe an incommensurate phase of a m
layer of a monoatomic gas adsorbed on a hexagonal subs
@13#. The entropy of such a network is largely due to t
‘‘breathing’’ of the cells: it is possible to enlarge a doma
and simultaneously shrink its six neighbors or vice versa

Hexagonal domain-wall structures also occur in t
square-triangle random tiling model@14#. For that model a
coordinate Bethe ansatz was found by Widom@15#. The re-
sulting Bethe ansatz equations were solved analytically
1063-651X/2001/63~6!/066122~18!/$20.00 63 0661
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the thermodynamic limit by Kalugin@16#. An exact solution
of the trimer model was announced in@17#; in the present
paper we describe its derivation. The solution is very sim
to that for the square-triangle tiling, and we closely follo
Kalugin’s arguments. The outline of our calculation is
follows. A transfer matrix for the model is formulated. Afte
the choice of a reference state two types of elementary e
tations are found. They are closely related to the abo
mentioned domain-wall structure of the model. In order
diagonalize the transfer matrix, a coordinate Bethe ansa
set up in terms of the elementary excitations. The result
semigrand canonical ensemble is discussed. In the therm
namic limit the Bethe ansatz leads to a set of two coup
integral equations. These can be solved in a special c
From their solution the relevant physical quantities are co
puted. The results of the calculation are summarized in S
VI E. We then consider the entropy as function of the dens
of down trimers. The model undergoes two phase transiti
in the density of down trimers.

Finally, we discuss the relation between the trimer mod
the square-triangle random tiling model, and yet anot
solvable model with a hexagonal domain-wall structure.

II. PRELIMINARIES

A. Sublattices

Figure 2 shows a very regular configuration of the mo
in which the trimers are positioned on a sublattice of t
triangular faces. There are six such sublattices, which
number 0, 1,..., 5 as indicated in the figure. Note that
even-numbered sublattices consist of the up triangles w

FIG. 1. A typical configuration of the trimer mode. Each lattic
site belongs to precisely one trimer.
©2001 The American Physical Society22-1
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the down triangles constitute the odd-numbered sublatti
For a given configuration, letN denote the total number o
trimers and letNi denote the number of trimers on sublatti
i. We wish to compute the entropy per trimer as a function
the sublattice densities

r05
N0

N
, r15

N1

N
, ..., r55

N5

N
.

These densities satisfy the obvious linear constraint

r01r11r21r31r41r551. ~1!

In Sec. II E it will be shown that when toroidal bounda
conditions are imposed the densities also satisfy a quad
constraint

r0r21r2r41r4r05r1r51r3r51r5r1 . ~2!

Hence, of the six sublattice densities only four are indep
dent. In order to be able to set up a transfer matrix we pas
the grand canonical ensemble. The density of trimers on e
sublatticei is controlled by a fugacitywi or, equivalently, a
chemical potentialm i5 ln wi . After the transfer matrix has
been diagonalized we shall Legendre transform back to
canonical ensemble.

B. Domains and walls

Occupying sublattice 0 completely while leaving the oth
five sublattices empty results in the configuration of t
model shown in Fig. 2. This arrangement does not ad
local changes. However, it is possible to flip a whole line
trimers. Such a line can be viewed as a wall separating
domains consisting of trimers on sublattice 0. These dom
walls come in three types~orientations! corresponding to the
three odd-numbered sublattices. When two walls of differ
types meet, a wall of a third type is formed. A trimer o
sublattice 2 or 4 occurs when three domain walls of differ
types meet in a vertex shaped as a Y, but this does
happen at an inverted Y. Figure 3 shows examples of h
the three types of domain walls can meet. In a general c
figuration the domain walls form a hexagonal network.

FIG. 2. A regular configuration in which the trimers occupy o
sublattice of the faces. There are six such sublattices numbere
1,..., 5.
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C. Transfer matrix

In an allowed configuration of the model each lattice s
belongs to precisely one trimer. This trimer sits either on o
of the three lattice faces above the site or on one of the th
faces below the site. Label the site with a ‘‘spin’’↑ or ↓
accordingly.

Consider a horizontal row of lattice sites and assume
the trimer configuration below that row is given. It dete
mines the spins on that row. The sites occupied by a trim
below have a spin↓ while those not occupied by such
trimer must carry a spin↑. Now consider the next layer o
lattice faces above this row. In order to decide what trim
configurations on this layer are possible, it is sufficient
know which sites are already covered. This is precisely
information encoded by the spins.

This shows that the model can be described in terms
transfer matrix that connects two consecutive rows of sp
Let s denote the spin configuration on the lower row andt
the spin configurations on the upper row. Consider all
trimer arrangements~without overlaps! on the layer in be-
tween that are compatible with the spin configurationss and
t. ~Generally there is at most one such arrangement.! The
sum of their Boltzmann weights is the transfer matrix e
mentTts .

D. Conserved quantities and elementary excitations

In the configuration obtained by fully occupying subla
tice 0, each row of spins consists of repeating blocks↑↓↑.
Therefore we group the sites into blocks of three, as in F
4. Number the blocks in a row from left to right.

Consider a trimer configuration on a layer of the lattic
Let L denote the number of blocks per row and
n0 ,n1 ,...,n5 denote the number of trimers in this layer o

0,

FIG. 3. The configuration from Fig. 2 admits line excitation
These domain walls can meet in Y’s~top! and inverted Y’s~bot-
tom!. The Y’s are chiral; the mirror image of the Y shown he
contains a trimer on sublattice 4 instead of 2. The inverted Y’s
achiral. To guide the eye the trimers not on sublattice 0 are sha
lighter; the numbers indicate their sublattices.
2-2
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BETHE ANSATZ SOLUTION OF TRIANGULAR TRIMERS . . . PHYSICAL REVIEW E 63 066122
each sublattice. The horizontal and vertical lattice direct
are viewed as ‘‘space’’ and ‘‘time,’’ respectively; the lowe
and upper row of the layer then are time-slices at timest and
t11. Counting the number of↑ spins in the lower row and
distinguishing by the position inside the block, gives

n↑d d

~ t !
5n01n11n2 .

n
d↑d

~ t ! 5n21n31n4 ,

nd d↑~ t !
5n41n31n0 .

From this, one gets

n↓d d

~t!
1n

d↑d

~t! 5L2n02n11n31n4 , ~3!

nd d↓~t!
1n

d↑d

~t! 5L2n01n21n32n5 , ~4!

for t5t. The same can be done for the↓ spins in the upper
row. From this one gets that Eqs.~3! and ~4! hold for t5t
11. Hence the quantitiesn↓d d1n

d↑d
and nd d↓1n

d↑d
are

conserved between rows.
These conserved quantities are non-negative. The

row of spins for which both are zero consists entirely
blocks ↑↓↑. There is only one way to fit a layer of trimer
above this row. Of course the row of spins above that la
consists again entirely of blocks↑↓↑. This row state will be
chosen as the ‘‘empty’’ or reference state for the Bethe
satz in Sec. III.

A row of spins withn↓d d1n
d↑d

51 andnd d↓1n
d↑d

50
is obtained by replacing one block, say, at positionx, in the
reference state with↓↓↑. There is only one possible configu
ration of trimers on the layer above, see Fig. 5. The r
above consists of blocks↑↓↑ except for one block↓↓↑ at
positionx2 1

2 . Thus the transfer matrix has shifted the blo

FIG. 4. Spins for the configuration from Fig. 2. For clarity, th
edges of the triangular lattice have been largely omitted.

FIG. 5. There is only one way to fit trimers below a row co
sisting of one block↓↓↑ amidst blocks↑↓↑. It leads to another such
row of spins below.
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↓↓↑ in the lower row half a step to the left in the upper row
This block is a left-moving elementary excitation of the re
erence state. It will be called an L particle. Similarly th
block ↑↓↓ is an elementary right-moving excitation, or
particle. The conserved quantitiesn↓d d1n

d↑d
and nd d↓

1n
d↑d

are the numbernL of L particles and the numbernR
of R particles, respectively.

The particle content of the blocks↑↓↑, ↓↓↑, and↑↓↑ has
now been determined. For each of the other five blocks b
nL andnR are greater than zero. Therefore these blocks
combinations of the elementary excitations. They will be d
cussed in more detail in Secs. III C–III E.

We have found no other conserved quantities thannL and
nR ~except in the special case whennL50 or nR50).

E. World lines and quadratic constraint

Divide the lattice into hexagonal patches containing o
face from each sublattice in such a way that the lower mid
triangle of each patch belongs to sublattice 0. There are
trimer configurations possible on such a patch. Decorate e
patch with solid and dotted lines according to this config
ration as shown in Fig. 6. It is straightforward but tedious
verify that the decorations of the patches making up the
tice fit together such that the set of solid and dashed dec
tions run continuously from the bottom to the top of th
lattice. It can also be checked that the crossings of these l
with the lattice rows correspond to the locations of the
particles~solid lines! and R particles~dashed lines!. Hence
these lines are the ‘‘world lines’’ of theL particles and R
particles where the horizontal and vertical lattice directi
are viewed as ‘‘space’’ and ‘‘time,’’ respectively.

Impose toroidal boundary conditions. We now derive t
quadratic constraint~2! by the same method as that used f
rectangle-triangle random tiling models in@18,19#. Cut the
torus open along a horizontal row of sites so that the mo
is now on a cylinder. By stacking a number of copies of t
configuration on top of each other, we can achieve that e
world line winds around the cylinder an integer number
times. Let 2M be the number of rows in the configuratio
including these copies. In each row we can count the num
of L particles and R particles@see Eqs.~3! and ~4!#,

nL5L2n02n11n31n4 , ~5!

FIG. 6. Decompose the triangular lattice into hexagonal patc
such that the lower middle triangle of each patch belongs to sub
tice 0. The other triangles, in counterclockwise order, then bel
to sublattices 1, 4, 3, 2, and 5. These patches can be decorated
the world lines of the L particles~solid! and R particles~dashed!.
2-3
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ALAIN VERBERKMOES AND BERNARD NIENHUIS PHYSICAL REVIEW E63 066122
nR5L2n01n21n32n5 . ~6!

Summing over the entire lattice yields

2MnL52LM2N02N11N31N4 , ~7!

2MnR52LM2N01N21N32N5 . ~8!

The total leftward movement of the L particles can be co
puted in two ways. On the one hand, it can be expresse
terms of the winding numbers of the L particle world line
Since these world lines do not cross each other, they all h
the same winding numberWL . On the other hand, leftward L
particle movement is associated with trimers on sublattice
and 5, see Fig. 6. The same can be done for the total ri
ward movement of the R particles. Hence

nLWLL5 1
2 ~N21N5!, ~9!

nRWRL5 1
2 ~N11N4!. ~10!

The crossings of L-particle world lines and R-particle wo
lines can be counted in two ways. On the one hand, t
number can be expressed in terms of the winding numb
On the other hand, crossings occur precisely at trimers
sublattice 2 or 4. This yields

nLnR~WL1WR!5N21N4 .

Substituting into the above equation, first Eqs.~9! and ~10!
and then Eqs.~7! and ~8!, then multiplying by 2LM , using

2LM5N01N11N21N31N41N5

and dividing byN2 yields the quadratic constraint~2!.

III. BETHE ANSATZ

In this section we describe a Bethe ansatz~BA! that di-
agonalizes the transfer matrix. Since the particle numbernL
andnR are conserved, the transfer matrix is block diagona
these quantities. We begin by considering the sector w
nL50 andnR50 and then pass to sectors with higher p
ticle numbers.

A. No particles

The only state in the sectornL50, nR50 is the reference
state that consists entirely of blocks↑↓↑, so this sector is one
dimensional. Therefore the transfer matrix acting on this s
tor is trivially diagonal. The layer between two consecuti
rows in the reference state consists ofL trimers on sublattice
0, so its Boltzmann weight isw0

L . It is the eigenvalue of the
transfer matrix in this sector. For convenience we define
‘‘reduced’’ transfer matrixT̃ to be the transfer matrixT di-
vided byw0

L .

B. One L particle

Consider a row of spins containing a single L partic
~↓↓↑! at positionx. The transfer matrix has shifted this pa
ticle from positionx1 1

2 in the row below half a step to th
06612
-
in

.
ve

2
t-

ir
rs.
n

n
th
-

c-

e

left, see Fig. 5. The layer between the two rows containL
21 trimers on sublattice 0 and one trimer on sublattice
Hence the action of the~reduced! transfer matrix on the
‘‘wave function’’ is given by

~ T̃c!~↓↓↑x!5
w5

w0
c~↓↓↑x1 1

2 !.

~We use↓↓↑ x as notation for the row configuration that ha
a block↓↓↑ at positionx and blocks↑↓↑ at the other posi-
tions.! The solution of the eigenvalue problemT̃c5L̃c is

c~↓↓↑x!5Auux,

whereAu is some constant and

L̃5
w5

w0
u1/2.

C. One L particle and one R particle

Consider a row of spins containing an L particle~↓↓↑! at
positionx and an R particle~↑↓↓! at positiony with x,y. If
the particles are apart, this situation was formed by shift
the L particle to the left and the R particle to the right,

~ T̃c!~↓↓↑x,↑↓↓y!5
w5w1

w0
2 c~↓↓↑x1 1

2 ,↑↓↓y2 1
2 !

if y2x.1. ~11!

@We write the arguments ofc in order of increasing position
for example, the notation in the left-hand side~LHS! of Eq.
~11! implies thatx,y.] If, however, the particles are next t
each other, the situation was formed from a ‘‘bound stat
~↓↓↓!, see Fig. 3~top!,

~ T̃c!~↓↓↑z2 1
2 ,↑↓↓z1 1

2 !5
w5w1

w0
2 c~↓↓↓z!. ~12!

This bound state was formed from another type of bou
state~↑↑↑!,

~ T̃c!~↓↓↓z!5
w4w1

w0
c~↑↑↑z2 1

2 !1
w5w2

w0
c~↑↑↑z1 1

2 !.

~13!

The two terms correspond to two chiral configurations, o
of which is depicted in Fig. 3. The latter bound state~↑↑↑!
was formed from an R particle and an L particle in adjac
blocks, the R particle sitting to the left of the L particle,

~ T̃c!~↑↑↑z!5
1

w0
c~↑↓↓z2 1

2 ,↓↓↑z1 1
2 !. ~14!

This configuration may have arisen from the same bou
state again. The alternation of this bound state and the s
ation where the R particle and L particle are next to ea
other ~↑↓↓ ↓↓↑! corresponds to the vertical domain wall
Fig. 3. The configuration where the particles are next to e
other may also have arisen from a situation where the p
2-4
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ticles were two steps apart, by shifting the R particle ha
step to the right and the L particle half a step to the left,
Fig. 3 ~bottom!,

~ T̃c!~↑↓↓z2 1
2 ,↓↓↑z1 1

2 !5w3c~↑↑↑z!

1
w1w5

w0
2 c~↑↓↓z21,↓↓↑z11!.

~15!

Finally, a configuration where the particles are apart w
formed by shifting the R particle half a step to the right a
the L particle half a step to the left,

~ T̃c!~↑↓↓y,↓↓↑x!5
w1w5

w0
2 c~↑↓↓y2 1

2 ,↓↓↑x1 1
2 !

if x2y.1. ~16!

We want to solve the eigenvalue equationT̃c5L̃c for Eqs.
~11!–~16!. The eigenvalue equation for Eqs.~11! and~12! is
satisfied by

c~↓↓↑x,↑↓↓y!5Auvuxvy,

c~↓↓↓z!5Auvuzvz

with eigenvalue

L̃5
w5

w0
u1/2

w1

w0
v21/2.

Similarly the eigenvalue equation for Eqs.~14!, ~15!, and
~16!, with the sameL̃, is satisfied by

c~↑↓↓y,↓↓↑x!5Avuvyux if x2y.1,

c~↑↓↓z2 1
2 ,↓↓↑z1 1

2 !5BvuAvuvz21/2uz11/2,
06612
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c~↑↑↑z!5DBvuAvuvzuz,

where

Bvu5S 12
w0

3w3

w1
2w5

2 u21v D 21

, ~17!

D5
w0

w1w5
. ~18!

The eigenvalue equation for Eq.~13! is satisfied too if

Auv

Avu
5Suv ,

where

Suv5
w0

2

w1w5
S w4

w5
u211

w2

w1
v D S 12

w0
3w3

w1
2w5

2 u21v D 21

.

~19!

The above analysis suggests to interpret the bound state↓↓↓
as LR ~in that order! and the bound state↑↑↑ as RL. The
eigenfunction is then written

c~Lx,Ry!5Auvuxvy,

c~Ry,Lx!5H Avuvyux if x2y>2

BvuAvuvyux if x2y51

DBvuAvuvyux if x2y50.

D. Two L particles and one R particle

A similar but more tedious analysis can be carried out
the sector with two L particles and one R particle. There i
new bound state~↓↑↑! that can be interpreted as LRL. A
solution of the eigenvalue problemT̃c5L̃c is given by
c~Lx1 ,Lx2 ,Ry!5(
p

Aup~1!up~2!v
up~1!

x1 up~2!

x2 vy,

c~Lx1 ,Ry,Lx2!55
(
p

Aup~1!vup~2!
up~1!

x1 vyup~2!

x2 if x22y>2

(
p

Bvup~2!
Aup~1!vup~2!

up~1!

x1 vyup~2!

x2 if x22y51

(
p

DBvup~2!
Aup~1!vup~2!

up~1!

x1 vyup~2!

x2 if x22y50,

c~Ry,Lx1 ,Lx2!55
(
p

Avup~1!up~2!
vyup~1!

x1 up~2!

x2 if x12y>2

(
p

Bvup~1!
Avup~1!up~2!

vyup~1!

x1 up~2!

x2 if x12y51

(
p

DBvup~1!
Avup~1!up~2!

vyup~1!

x1 up~2!

x2 if x12y50,
2-5
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ALAIN VERBERKMOES AND BERNARD NIENHUIS PHYSICAL REVIEW E63 066122
wherep runs through the permutations of$1,2%. The ampli-
tudes must satisfy

Auiui 8v

Aui 8uiv
5

Avuiui 8

Avui 8ui

521 ~ iÞ i 8!, ~20!

Auivui 8

Avuiui 8

5
Aui 8uiv

Aui 8vui

5Suiv
~ iÞ i 8!, ~21!

with Suiv
given by Eq.~19!. Note that the amplitude ratios i

Eq. ~20! do not depend onv and that the amplitude ratios i
Eq. ~21! do not depend onui 8 . The eigenvalue is given by

L̃5
w5

w0
u1

1/2w5

w0
u2

1/2w1

w0
v21/2.

E. Arbitrary particle numbers

With two L particles and two R particles, there is a ne
bound state~↓↑↓! that can be interpreted as LRLR. Th
completes the list of possible blocks and their interpretat
in terms of particles, see Table I.

The solution given above of the eigenvalue problemT̃c

5L̃c for two L particles and one R particle generalizes
the higher sectors. Before describing this generalization
introduce a notational convention. The indexi, running from
1 to nL , will be used to number L-particle positions an
Bethe-ansatz variables. The indexj, between 1 andnR, will
refer to R particles. Now consider a succession of L partic
with coordinatesx1<x2<¯<xnL

and R particles with co-

ordinatesy1<y2<¯<ynR
. ~Note that xi5xi 11 can arise

only from a block LRL or LRLR, soxi5yj5xi 11 for some
yj .) The value of the wave function is given by

c~particle sequence!

5(
p

(
s

) ~D and B . . . !A . . . )
i 51

nL

up~ i !
xi )

j 51

nR

vs~ j !
yj ,

~22!

wherep ands run through all permutations of$1, 2,...,nL%
and $1, 2,..., nR%, respectively. We shall now describe th
factors in the right-hand side~RHS! of Eq. ~22!. For each

TABLE I. The three-spin blocks.

Spins Particles

↑↓↑ None
↓↓↑ L
↑↓↓ R
↓↓↓ LR
↑↑↑ RL
↓↑↑ LRL
↑↑↓ RLR
↓↑↓ LRLR
06612
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segment Ryj ,L xi in the particle sequence withxi2yj51,
there is a factorBvs( j )up( i )

. For each such segment withxi

2yj50, there is a factorDBvs( j )up( i )
. The amplitudeA . . .

depends on the sequence of the variablesu and v corre-
sponding to the sequence of L particles and R particles.
u’s are in the orderup(1) ,up(2) ,...,up(nL) and thev ’s are in

the ordervs(1) ,vs(2) ,...,vs(nR) , but the two sequences in

terlace. The amplitudesA . . . are defined up to an overa
factor by the conditions

A...uiui 8 ...

A...ui 8ui ...
521 ~ iÞ i 8!,

A...v jv j 8 ...

A...v j 8v j ...
521 ~ j Þ j 8!,

A...uiv j ...

A...v j ui ...
5Suiv j

with Suiv j
given by Eq.~19!. Finally comes the product of al

theup( i )
xi andvs( j )

yj . The eigenvalue for the eigenfunctionc is
given by

L̃5)
i 51

nL w5

w0
ui

1/2)
j 51

nR w1

w0
v j

21/2.

We have no rigorous proof that the above solution is corr
for all sectors, but using computer algebra we have verifie
for nL1nR<5.

It should be noted that the formulation of the solutio
depends on the particle interpretation of the three-s
blocks. The particle content of each three-spin block is
termined bynL5n↓d d1n

d↑d
and nR5n↓d d1n

d↑d
, but the

order of the particles within a block can be chosen. For
ample, we could interpret↓↑↑ as LLR, LRL, or RLL. The
choices in Table I lead to a simple description of the eig
functions; each factorD or B depends only on two succes
sive particles. Other choices than those in Table I wo
make the formulation of the eigenfunctions more cumb
some; there would be more factors than justD and B, and
some would depend on nonsuccessive particles.

F. Bethe ansatz equations

The eigenfunctionc given by Eq.~22! satisfies periodic
boundary conditions if the Bethe ansatz equations~BAE’s!
hold,

ui
L5~21!nL21)

j 51

nR

Suiv j
, ~23!

v j
L5~21!nR21)

i 51

nL

Suiv j

21 . ~24!
2-6
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Note that although the description of an eigenfunction
terms of u’s and v ’s involves factors~17! and ~18!, the
BAE’s only contain factors~19!.

Upon substitution of

u5S w0
3w3w4

w1w2w5
3D 1/2

j and v52S w1
3w4w5

w0
3w2w3

D 1/2

h21

~25!

the BAE’s ~23! and ~24! become

S w0
3w3w4

w1w2w5
3D L/2S w1w3w5

w0w2w4
D nR/2

j i
L

5~21!nL1nR21)
j 51

nR

h j
21 j i2h j

j i1h j
21 , ~26!

S w0
3w2w3

w1
3w4w5

D L/2S w1w3w5

w0w2w4
D nL/2

h j
L

5~21!L1nR21)
i 51

nL

j i
21 h j2j i

h j1j i
21 . ~27!

These equations can be considered the key result in the e
solution of the model. They determine the possible values
j and h. These in turn determine the eigenvalues and
eigenfunctions of the transfer matrix,

L5w0
LS w3w4w5

w0w1w2
D nL/4S w1w2w3

w0w4w5
D nR/4

3F)
i 51

nL

j i)
j 51

nR

~2h j !G1/2

, ~28!

where we have reintroduced the factorw0
L that was omitted

as of Sec. III A.
As a check on the Bethe ansatz, we determined the ei

values of the transfer matrix for small system size by~brute
force! numerical diagonalization; the same eigenvalues w
obtained by numerically solving the BAE’s.

IV. THERMODYNAMICS

We are interested in the behavior of the model as a fu
tion of the sublattice densities, that is, the canonical
semble. In order to set up a transfer matrix, we have pas
to the grand canonical ensemble, which is controlled by s
lattice weights~or chemical potentials! instead of sublattice
densities. In this section it turns out that the transfer ma
leads to a semigrand canonical ensemble. It is contro
partly by densities~essentially the two conserved quantitie!
and partly by chemical potentials. We describe the Legen
transformation from this ensemble back to the canonical
semble. We also look into the symmetries between the s
lattices and how they appear in the semigrand canonical
semble.
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A. Legendre transformation

In passing to the grand canonical ensemble, each tri
on a sublatticei was given a weightwi5exp(mi). Certain
combinations of these weights occur in the BAE’s~26! and
~27! and in the expression~28! of the transfer matrix eigen
value in terms of the BA roots. It is convenient to assi
names to the corresponding combinations of the chem
potentialsm i ,

fL5 1
2 @~3m02m12m21m31m423m5!

1rR~2m01m12m21m32m41m5!#,

fR5 1
2 @~3m023m11m21m32m42m5!

1rL~2m01m12m21m32m41m5!#,

mL5 1
4 ~2m02m12m21m31m41m5!,

mR5 1
4 ~2m01m11m21m32m42m5!,

whererL5nL /L and rR5nR/L denote the densities of th
particles L and R. With these definitions, the BAE’s~26! and
~27! can be written

~efLj i !
L5~2 !nL1nR21)

j 51

nR

h j
21 j i2h j

j i1h j
21 , ~29!

~efRh j !
L5~2 !L1nR21)

i 51

nL

j i
21 h j2j i

h j1j i
21 , ~30!

while the eigenvalue expression~28! becomes

L5exp~Lm01nLmL1nRmR!F)
i 51

nL

j i)
j 51

nR

~2h j !G1/2

.

~31!

Taking the logarithm, dividing byL, and sendingL to infin-
ity gives the free energy per trimer in the thermodynam
limit,

V~rL ,rR;m0 ,m1 ,...,m5!

5F~rL ,rR;fL ,fR!2rL mL2rRmR2m0 ,

where

F~rL ,rR;fL ,fR!52 lim
L→`

1

L
lnF)

i 51

nL

j i)
j 51

nR

~2h j !G1/2

.

~32!

It is the free energy in a semigrand canonical ensem
where the numbers of trimers on the different sublattic
may vary but are subject to the constraints imposed by fix
the particle densities@see Eqs.~5! and~6!#. In order to do the
Legendre transform to the canonical ensemble, the der
tives of V with respect tom0 ,m1 ,...,m5 have to be taken.
This gives the ensemble average densities
2-7
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r05S 2
3

2
1

1

2
rRD ]F

]fL
1S 2

3

2
1

1

2
rLD ]F

]fR
2

1

4
rL

2
1

4
rR11, ~33!

r15S 1
1

2
2

1

2
rRD ]F

]fL
1S 1

3

2
2

1

2
rLD ]F

]fR
2

1

4
rL1

1

4
rR,

~34!

r25S 1
1

2
1

1

2
rRD ]F

]fL
1S 2

1

2
1

1

2
rLD ]F

]fR
2

1

4
rL1

1

4
rR,

~35!

r35S 2
1

2
2

1

2
rRD ]F

]fL
1S 2

1

2
2

1

2
rLD ]F

]fR
1

1

4
rL1

1

4
rR,

~36!

r45S 2
1

2
1

1

2
rRD ]F

]fL
1S 1

1

2
1

1

2
rLD ]F

]fR
1

1

4
rL2

1

4
rR,

~37!

r55S 1
3

2
2

1

2
rRD ]F

]fL
1S 1

1

2
2

1

2
rLD ]F

]fR
1

1

4
rL2

1

4
rR,

~38!

In Sec. II A it was seen that because the sublattice dens
satisfy two constraints, four of them are independent. Eq
tions ~33!–~38! express the sublattice densities in terms
only four quantities, namely,rL , rR, ]F/]fL , and
]F/]fR. Therefore these four quantities must be indep
dent and the sublattice densities given by Eqs.~33!–~38!
must satisfy the two constraints~1! and~2!. This can also be
verified by direct computation. The entropy per trimer is

S~r0 ,r1 ,...,r5!52V2 (
k50

5

rkmk

52F1
]F

]fL
fL1

]F

]fR
fR. ~39!

It is remarkable that the chemical potentialsm0 , mL , andmR
that occur in the expression~31! for the eigenvalue have
disappeared in the Legendre transformation. As a con
quence,F and hence the densitiesr0 ,r1 ,...,r5 and the en-
tropy S are now functions of four parameters: the partic
densitiesrL and rR and the potentiallike quantitiesfL and
fR. These are just the parameters that govern the BA
~29! and ~30!. This agrees with the fact that the canonic
ensemble also has four parameters.

B. Symmetries of the parameter space

For the reference state of the BA sublattice 0 was chos
Since the model is invariant under horizontal translatio
over a single lattice edge, sublattice 2~or 4! could have been
chosen instead. The original situation can be regained
06612
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renumbering the sublatticesi→ i 22 ~mod 6!. The sublattice
densitiesr i8 in the new numbering are related to the densit
r i in the old numbering by

r085r2 , r185r3 , etc.

and analogously for the chemical potentialsm i . From this,
one computes

rL8522rR, rR8512rR, fL852fL1fR, fR85

2fL .

Similarly the model is invariant under reflection in a ho
zontal line. The corresponding sublattice renumbering ii
→ i 13 ~mod 6!. This gives

rL8522rL , rR8522rR, fL85fL , fR85fR.

The model is also invariant under reflection in a vertical lin
For the line passing through sublattices 0 and 3, the ren
bering is i→2 i ~mod 6!. Obviously this is nothing but in-
terchanging left and right, so

rL85rR, rR85rL , fL85fR, fR85fL .

Together these three transformations generate a group o
der 12. In Sec. VI C we shall find four ‘‘families’’ of points
in the parameter space where the entropy of the model ca
computed exactly. These four families are related by symm
tries from this group. Finally, the model is invariant und
some rotations. As an example, consider the rotation o
2p/3 about an up triangle of the lattice. The odd sublattic
are renumbered: 1→3→5→1 and the even sublattices re
main invariant. This does not give a simple transformation
rL , rR, fL , andfR because in the definition of these fou
quantities the direction in which the transfer matrix ac
plays a special role. Rotations do not preserve this direct
in contrast to the translation and the two reflections descri
above. The symmetry group generated by all these op
tions is of order 36.

V. INTEGRAL EQUATIONS

In Sec. III two sets of BAE’s were derived. These equ
tions can be solved numerically for system sizeL up to a few
hundred, say. This can be done essentially in the full par
eter space.~The regions where numerical complications ar
can be mapped to regions without such difficulties by me
of symmetries from Sec. IV B.! We, however, want to ge
analytic expressions for the physical quantities of the mo
in thermodynamic limit. In the present section the BAE’s
the thermodynamic limit are turned into two integral equ
tions for two complex functions. These functions are mu
valued and their monodromy properties are obtained fr
the integral equations. The functions are then determi
from their monodromy and analyticity properties. In the ne
section these functions will be used to compute phys
quantities of the model.
2-8
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A. Derivation

We shall now in the usual fashion derive integral equ
tions from the BAE’s~29! and~30!. The logarithmic version
of these BAE’s is

LFL~j i ![~nL1nR21!p i ~mod 2p i !, ~40!

LFR~h j ![~L1nR21!p i ~mod 2p i !, ~41!

where

FL~z!5 ln z2
1

L (
j 51

nR

@ ln~z2h j !2 ln~z1h j
21!#

1fL1
1

L (
j 51

nR

ln h j ,

FR~z!5 ln z2
1

L (
i 51

nL

@ ln~z2j i !2 ln~z1j i
21!#

1fR1
1

L (
i 51

nL

ln j i . ~42!

The derivatives of these functions are denotedf L(z) and
f R(z), respectively.

For the understanding of the structure of the solutions
the BAE’s we rely on numerical computations for finite sy
tem size. For many values of the parametersrL , rR, fL ,
and fR the BA roots for the largest eigenvalue show t
following features. The rootsj i andh j lie on smooth curves
in the complex plane. When the system size becomes la
these curves tend to well-defined limit shapes. These l
curves will be calledJ andH. The sets$j i% and $h j% ~and
hence also the curvesJ andH! are invariant under comple
conjugation; this implies that

f L~z* !5 f L~z!* and f R~z* !5 f R~z!* . ~43!

The curveJ crosses the positive real axis whereasH crosses
the negative real axis. Figure 7 shows the distribution of
roots for the largest eigenvalue in a given sectornL ,nR.

By means of the same arguments as used by Kalugin@16#
for the square-triangle tiling, it can be derived that in t
thermodynamic limit the derivativesf L(z) and f R(z) satisfy
the integral equations

f L~z!5
1

z
1

1

2p i EH
S 1

h2z
1

1

h211zD f R~h!dh, ~44!

f R~z!5
1

z
1

1

2p i EJ
S 1

j2z
1

1

j211zD f L~j!dj. ~45!

Let bL andbR denote the end points in the upper half pla
of J and H, respectively. Then the integration contourJ
runs frombL* to bL while H runs frombR to bR* . From Eqs.
~44! and ~45!, it is seen thatf L(z) has branch cutsH and
2H21 and thatf R(z) has branch cutsJ and2J21. From
06612
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the same equations it is easily computed thatz fL(z) and
z fR(z) are invariant underz°2z21. Therefore we substi-
tute

z2z215 ẑ ~46!

and define

gL~ ẑ!5z fL~z! and gR~ ẑ!5z fR~z!. ~47!

The two branch cutsH and2H21 of f L(z) then collapse to
a single branch cutĤ of gL( ẑ) and similarly forf R(z). Equa-
tions ~44! and ~45! become

gL~ ẑ!511
1

2p i EĤ

1

ĥ2 ẑ
gR~ ĥ !dĥ, ~48!

gR~ ẑ!511
1

2p i
E

Ĵ

1

ĵ2 ẑ
gL~ ĵ !dĵ. ~49!

The functions f L(z) and f R(z) and hence alsogL( ẑ) and
gR( ẑ) contain all the information about the BA rootsj i and
h j that is needed to compute the densitiesrL and rR, the
phasesfL andfR, and the semigrand canonical free ener
F.

The integral equations~48! and ~49! are very similar to
the equations obtained by Kalugin@16# for the square-
triangle random tiling model. He tackles his equations
exploiting the monodromy properties of the functions. W
shall use the same method for our integral equations, clo
following Kalugin’s argument.

B. Monodromy and analyticity properties

In the remainder of this paper we shall, unless stated o
erwise, consider the special case that the end points anb̂L

b̂L* of Ĵ coincide with the end pointsb̂R and b̂R* of Ĥ, and
that the contours do not meet in other points. Following

FIG. 7. Distribution of the BAE roots for the largest eigenvalu
The j are on the right, theh on the left.~The parameters have th
valuesfL520.46,fR520.653,nL515, nR518, andL530.)
2-9
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argument given for the square-triangle tiling by Kalug
@16#, one can then show that the functionsgL( ẑ) andgR( ẑ)
are different branches of one functiong( ẑ), which is a
single-valued functionh(t) of the variable

t5t~ ẑ!5S ẑ2b̂

ẑ2b̂*
D 1/6

. ~50!

Kalugin’s argument leads to an explicit expression for ea
of the branches ofg( ẑ)5h(t) in terms ofgL( ẑ) andgR( ẑ).
These expressions and the location in thet plane of the
branches are shown in Fig. 8. In particular, the branch c
taining the pointt5e2p i /3 is gR( ẑ).

It follows from Eq.~48! thatgL( ẑ) is analytic everywhere
except on the branch cutĤ. Similarly, gR( ẑ) is analytic ev-
erywhere except onĴ. In particular, it is analytic on the
contourĤ, except perhaps at the end points, as these lie
on Ĵ. It then follows from Eq.~48! thatgL( ẑ) remains finite
if ẑ approaches a point~not an end point! on its branch cut
Ĥ. An analogous statement holds forgR( ẑ). To summarize,
gL( ẑ) and gR( ẑ) are finite everywhere except perhaps atb̂

and b̂* . Thereforeh(t) is analytic everywhere except pe
haps att50 andt5`. Becauseh(t) is single valued, it can
only have power singularities~with integer exponent!. Now

rL5
1

2p i EJ
f L~z!dz

5
1

2p i EĴ
gL~ ẑ!

dz

dẑ
dẑ5

1

2p i È
0

h~ t !
dz

dẑ

dẑ

dt
dt, ~51!

FIG. 8. The complext plane. The contours corresponding toĴ

and Ĥ divide the plane into sectors that correspond to differ
branches of the functiong( ẑ). The shaded regions correspond
gL( ẑ) andgR( ẑ). ~The interest of this picture lies in its qualitativ
features, but it was actually obtained from a numerical solution
the BAE’s. The parameters arefL520.46, fR520.653, nL

5152, nR5186, and L5200. These values correspond tob̂
52ie20.05i .)
06612
h

n-

so

where the last integral is over some contour running from`
to 0, is finite. Sincedz/dẑ remains finite and nonzero fort
near 0 or̀ , and

dẑ

dt
5

6~ b̂2b̂* !t5

~ t621!2 ;H t5, if t→0

t27, if t→`,

it follows thath(t) has, at most, singularitiest25 at t50 and
t5 at t5`. Hence, the 1-form

g~ ẑ!dẑ5h~ t !
dẑ

dt
dt ~52!

is nonsingular att50 andt5`.

C. Calculation of g„ ẑ…

In the previous subsection it was shown that the 1-fo
~52! is nonsingular att50 andt5`. The only singularities
it can have are second-order poles at the zerost1 ,t2 ,...,t6 of
t621. ~These are the points in thet plane corresponding to
ẑ5`.) Therefore it can be written as

g~ ẑ!dẑ5h~ t !
dẑ

dt
dt5 (

h51

6 H r k

t2tk
1

sk

~ t2tk!
2J dt.

The coefficientsr k andsk are given by

r k5Rest5tk
h~ t !

dẑ

dt
dt5Resẑ5`g~ ẑ!dẑ

and

sk5Rest5tk
~ t2tk!h~ t !

dẑ

dt
dt

5@~ t2tk!ẑ# t5tk
Resẑ5`ẑ21g~ ẑ!dẑ,

where the appropriate branch ofg( ẑ) is to be taken.
The residues Resẑ5`g( ẑ)dẑ and Resẑ5`ẑ21g( ẑ)dẑ still

have to be computed. From Eqs.~48! and ~49!, one has

Resẑ5`gL~ ẑ!dẑ52
1

2p i EĤ
gR~ ĥ !dĥ5..RL ,

Resẑ5`gR~ ẑ!dẑ52
1

2p i EĴ
gL~ ĵ !dĵ5..RR,

and

Resẑ5`ẑ21gL~ ẑ!dẑ521,

Resẑ5`ẑ21gR~ ẑ!dẑ521.

The residues for the other branches ofg( ẑ) follow directly
from the expressions in Fig. 8. They are listed in Table II
follows from Eq.~43! that the integralsRL andRR are real.

Combining these results gives, after some algebra,

t

f

2-10
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g~ ẑ!5 (
k51

6 H r k

t2tk
1

sk

~ t2tk!
2J S dẑ

dt D
21

5~122C!t1~122C* !t211C~ t1t25!

1C* ~ t211t5! ~53!

with

C5
1

6
1

1

2) Im b̂
@ep i /3RL2e2p i /3RR#.

We shall now argue in the generic case,b̂Þ2i , that C
50. From Eqs.~40! and ~41!, the curvesJ and H are de-
scribed by Re@fL(z)dz#50 and Re@fR(z)dz#50, respec-
tively, so the corresponding curves in thet plane are both
solutions of

ReFg~ ẑ!

z

dz

dẑ

dẑ

dt
dtG50. ~54!

Note thatz anddz/dẑ are not single-valued functions oft but
the two branches of

1

z

dz

dẑ
5

1

z1z21 5
1

Aẑ214

differ only by a sign, which does not influence Eq.~54!. The
two different solutions of Eq.~54! corresponding toJ and
H, respectively, meet att50 ~and at t5`), so at these
points the differential equation admits multiple solution
When t→0

g~ ẑ!

z

dz

dẑ

dẑ

dt
dt56

b̂2b̂*

b1b21 @C1~12C* !t41O~ t6!#dt,

so this implies thatC50.
We shall now argue in the special caseb̂52i that C50.

When t→0

f ~z!dz5
g~ ẑ!

z

dz

dẑ

dẑ

dt
dt56@Ct231~12C* !t1O~ t3!#dt

~and similarly whent→`). The finiteness of the integra
~51! ~or its analog forrR) implies thatC50.

Now Eq. ~53! becomes

TABLE II. The poles and residues ofg( ẑ)dẑ.

k tk g Resẑ5`g( ẑ)dẑ Resẑ5`ẑ21g( ẑ)dẑ

1 ep i /3 gL RL 21
2 2e2p i /3 2gR 2RR 1
3 21 2gL2gR 2RL2RR 2
4 2ep i /3 2gL 2RL 1
5 e2p i /3 gR RR 21
6 1 gL1gR RL1RR 22
06612
.

g~ ẑ!5t1t21. ~55!

The functionsgL( ẑ) and gR( ẑ) are obtained by taking the
appropriate branchestL( ẑ) and tR( ẑ) of t( ẑ). The branch
tL( ẑ) is determined bytL(`)5ep i /3 and the fact that it hasĤ
as its only branch cut. Similarly,tR( ẑ) is determined by
tR(`)5e2p i /3 and the fact that it hasĴ as its only branch
cut.

VI. CALCULATION OF PHYSICAL QUANTITIES

In Sec. IV the relation was established between the
nonical ensemble we are interested in and the semigrand
nonical ensemble that arises in the BA from Sec. III. In S
V, BA information was encoded in two complex function
satisfying a set of integral equations. These functions w
then solved from those equations. In the present section
physical quantities occurring in Sec. IV are extracted fro
the complex functions determined in Sec. V.

A. Calculation of rL , rR , fL , fR , and F

From Eqs.~47! and ~55!, f L(z) and f R(z) are both given
by

f ~z!5
t1t21

z
, ~56!

with different branches oft. It was claimed in Sec. V A tha
the BA parametersrL , rR, fL , andfR and the semigrand
canonical-free energyF can be computed from the function
f L(z) and f R(z). These functions depend on the pointb̂. The
particle densityrL was already computed in Eq.~51!,

rL5
1

2p i EJ
f L~z!dz. ~57!

Becausef L(z) is analytic, this integral does not depend o
the precise shape ofJ but on its homology only.

Next fL is calculated. Sincef L(z) is known, the function
FL(z) is determined up to an integration constant. The r
part of this integration constant is fixed by ReFL(bL)50, Eq.
~40!. From Eq.~42!, one has

Re@FL~z!1FL~2z21!#52fL .

It is now easy to compute that

fL5
1

2
ReE

bL

2bL
21

f L~z!dz. ~58!

From Eq.~32! the free energyF equals2(SL1SR) with

SL5 lim
L→`

1

2

1

L (
j 51

nR

lnuh j u

and analogously forSR. Using Eq.~42!, one calculates
2-11
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SL5Re@FL~z!2 ln z#u0
`5

1

4
ReE

0

`S f L~z!2
1

zDdz.

~59!

In Eqs.~58! and~59!, the integral again only depends on th
homology of the integration path, not on its precise sha
The real part of the integral even does not depend at al
the path chosen between the integration end points, bu
imaginary part does. This is because the indefinite inte
~42! is a sum of logarithms with real prefactors, and distin
branches of a logarithm differ by a multiple of 2p i , which is
purely imaginary.

Replacing in Eqs.~57!, ~58!, and ~59! all subscripts L
with R and in Eq.~57!, the integration contourJ with H
yields expressions ofrR, fR, andSR as integrals of func-
tions involving f R(z). These integrals forrL , rR, fL , fR,
SL , andSR are of the form*ydz, where the points~y, z! lie
on an algebraic curve of genus 5. Therefore the indefi
integrals cannot be expressed in terms of ‘‘standard’’ fu
tions. This does not prove that the definite integrals we n
cannot be expressed in terms of standard functions, b
seems unlikely. Of course they can be evaluated numeric

B. Calculation of ­FÕ­fL and ­FÕ­fR

The Legendre transformation in Sec. IV A involves t
derivatives]F/]fL and ]F/]fR. Unfortunately, we have
not been able to computeF as a function ofrL , rR, fL ,
andfR for all values of these arguments. Instead, we hav
Sec. VI A computed these parameters and the free energ
the case that the curvesĴ andĤ close, as a function of thei
common end pointb̂5b̂L5b̂R. In order to still obtain the
derivatives]F/]fL and ]F/]fR, we resort to a perturba
tion analysis. The details can be found in the Appendix; h
we only give some results. An infinitesimally small compl
parameterC describes how far the curves open up. The th
modynamic parametersrL ,rR,fL ,fR and the free energyF
then are functions ofb̂ and C. If all their first-order partial
derivatives are known,]F/]fL and ]F/]fR can be found
by applying the standard coordinate-transformation form
to the transformation between coordinates Reb̂, Im b̂, ReC,
and ImC on one hand andrL , rR, fL , andfR on the other.
The derivatives with respect to Reb̂ and Imb̂ can be ob-
tained immediately from the integral expressions in S
VI A. For the derivatives with respect to ReC and ImC, the
perturbation analysis is needed. It tells that to leading or
in C the parametersrL ,rR,fL ,fR and the free energyF
52(SL1SR) are again given by the integrals~57!, ~58!,
and ~59!, and their analogs involvingf R(z), where f (z) is
now given by

f ~z!5
t1t211C~ t252t !1C* ~ t52t21!

z
. ~60!

This yields integral expressions for their derivatives with
spect to ReC and ImC.

The expressions thus obtained for the partial derivati
of rL , rR, fL , fR, andF with respect to Reb̂, Im b̂, ReC,
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and ImC were evaluated numerically for some chosen va
of b̂, and from this]F/]fL and ]F/]fR were calculated.
These derivatives were also computed from numerical s
tions of the BAE’s for large system sizeL by numerical
differentiation. The results from the two methods agr
which support the perturbation analysis of the Appendix.

C. Configuration of J and H

In the previous two sections several physical quantit
have been expressed as integrals of functions involvingf L(z)
and f R(z). These integrals depend on the parameterb̂ and on
the topology of the curvesJ andH, but not on their precise
shape. Ifb̂Þ2i there are two distinct points in thez plane
corresponding tob̂, say b1 and b2 . The end points ofJ
could beb1 andb1* or b2 andb2* , and the same holds forH.
Therefore one can expect at least four different configu
tions for one and the same value ofb̂. In order to determine
what these four configurations actually are, we first gues
what they might look like. Then we chose some particu
value of b̂ ~close to 2i ) and for each of the four expecte
cases computed the value of the particle densitiesrL andrR
and the phasesfL andfR. The BAE’s were solved numeri
cally for these parameter values, for large system sizeL. The
resulting curves followed byj andh display indeed the pre
supposed configurations. These curves are shown in Fig
Note that without first guessing the configurations we wo
have had no way to find the values of the parametersrL , rR,
fL , andfR, so there would have been no BAE’s to solv
numerically.

The numerical results show that these four cases are
lated by the symmetries of the parameter space discusse

FIG. 9. Four possible configurations of the curvesJ andH. The
dashed curved are2J21 and2H21. In cases I and IV,J andH
have the same end points. In cases II and III,J and 2H21 share
end points, as doH and2J21.
2-12
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TABLE III. The regions in parameter space of the sublattice densities for cases I–IV and I8–IV8.

ubLu ubRu Reb̂.0 Reb̂,0

.1 .1 r05r25r4 I r1.r5.r3 I8 r5.r1.r3

.1 ,1 r15r35r5 II r0.r2.r4 III 8 r4.r0.r2

,1 .1 r15r35r5 III r2.r0.r4 II 8 r0.r4.r2

,1 ,1 r05r25r4 IV r5.r3.r1 IV 8 r1.r3.r5
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Sec. IV B. They are in a single orbit of the subgroup of ord
six generated by the horizontal translation~which is of order
three! and the product of the reflection in a horizontal lin
and the reflection in a vertical line~which is of order two!.
For the remaining two members of this orbit we have n
been able to numerically solve the BAE’s. In these cases
particle densities are fairly high; we suppose that the cur
J andH would cross or otherwise violate the condition th
Ĵ and Ĥ only share their end points.

Once this symmetry is known, a~numerical! calculation
of the physical quantities needs to be carried out only for
of the four cases I–IV. The values for the other three ca
are then obtained at once by application of the symme
transformations.

D. Calculation of the sublattice densities and the entropy

In Sec. VI A the physical quantitiesrL , rR, fL , fR, and
F pertaining to the semigrand canonical ensemble were
culated from the functionsf L(z) and f R(z). In Sec. V B the
derivatives]F/]fL and]F/]fR were computed. Substitu
tion of these results into formulas~33!–~38! and Eq.~39!
from Sec. IV A gives the sublattice densities and the entro
physical quantities for the canonical ensemble. This was
formed numerically for a particular value ofb̂. The results
reveal thatr05r25r4 in cases I and IV andr15r35r5 in
cases II and III. From the expressions~33!–~38! for the sub-
lattice densities, this is equivalent to

]F

]fL
5 1

6 ~21rL22rR! and
]F

]fR
5 1

6 ~222rL1rR!

~61!

in cases I and IV and

]F

]fL
5 1

6 ~2rL12rR! and
]F

]fR
5 1

6 ~2rL2rR! ~62!

in cases II and III. One might hope to derive these expr
sions analytically from the results of Subsection VI A a
VI B. We have not tried this because it would involve rath
cumbersome relations among integrals~57!, ~58!, and ~59!.
Once the expressions~61! and ~62! have been accepted, th
perturbation analysis approach from Sec. VI B becomes
perfluous. Substituting them into Eqs.~33!–~38! and Eq.~39!
yields new expressions for the sublattice densities and
entropy. The expressions for the sublattice densities are p
nomials in the particle densitiesrL and rR, the expression
for the entropy also contains the phasesfL and fR and of
course the free energyF.
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Cases I–IV correspond to different regions in the para
eter space of sublattice densities, as given in Table III. Th
four cases are defined for Reb̂.0 by Fig. 9. The mirror
images~with respect to the imaginary axis! of the configu-
rations in Fig. 9 define cases I8–IV8 for Reb̂,0. For ex-
ample, the locus ofJ ~H! for case I8 is the mirror image of
the locus ofH ~J! for case I. Table III also lists the region
in the parameter space of sublattice densities correspon
to the cases I8–IV8.

E. Summary

In the foregoing section an exact solution of the trim
model was derived. Because the results are obtained in
course of a long derivation, we here provide a guide throu
them. The final result is the entropy as a function of s
sublattice densitiesr i defined in Sec. II A. Complete cover
age of the lattice~1! and a further geometric constraint~2!
~derived in Sec. II E! leave four independent parameters.
full analytic solution in the thermodynamic limit is obtaine
in a two-parameter subspace.

The four-dimensional parameter space is described
new variablesrL , rR, fL , andfR. The free-energy func-
tion of the ensemble with these parameters is denoted bF.
The sublattice densities are expressed inrL , rR, ]F/]fL ,
and]F/]fR in Eqs.~33!–~38!; the entropy is given in terms
of F, fL , fR, ]F/]fL , and]F/]fR in Eq. ~39!.

The free energy is written as a sum,F52(SL1SR). In
the solvable subspace the quantitiesrL , fL , and SL are
expressed as contour integrals of a functionf L(z) in Eqs.
~57!–~59!. Analogously, the quantitiesrR, fR, andSR are
integrals of a functionf R(z). The integration paths in the
integral~57! for rL and its analog forrR are contoursJ and
H, respectively. These contours are symmetric under c
plex conjugation. Their end points in the upper half plane
denotedbL and bR, respectively. These satisfy the equali
bL2bL

215bR2bR
215b̂. For each value ofb̂ ~except b̂

52i ) this equation has two distinct solutions forbL and for
bR resulting in four configurations I–IV ofJ andH shown
in Fig. 9. The derivatives]F/]fL and]F/]fR are given by
Eq. ~61! in the cases I and IV and by Eq.~62! in the cases II
and III.

The functionsf L(z) and f R(z) are different branches of a
function f (z). The branch cuts off L(z) are H and 2H21

and f R(z) has branch cutsJ and2J21. In terms of a new
variablet, defined by Eqs.~46! and~50!, the functionf (z) is
single valued. It is given by Eq.~56!, while the functions
f L(z) and f R(z) are recovered by selecting the appropria
branchtL(z) andtR(z) of t, specified at the end of Sec. V C
2-13
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VII. PHASE DIAGRAM

In Secs. II A and II E, a linear and a quadratic constra
on the six sublattice densities were derived. In this sec
we first show that these constraints imply a breaking of
symmetry between certain sublattices. This symmetry bre
ing suggests that a phase transition takes place when the
densityr¹5r11r31r5 of down trimers is increased from
to 1. Next we compute the entropy as a function ofr¹ from
the exact solution of this model. From this entropy the ph
diagram of the model in the parameterr¹ is obtained. It is
also formulated in terms of the chemical potential of t
down trimers instead of their density.

A. Symmetry breaking

The linear constraint~1! on the sublattice densities can b
rewritten as

r01r21r4512r¹ , ~63!

and from the quadratic constraint~2! one has

r0r21r2r41r4r0< 1
3 r¹

2 ~64!

with equality if and only ifr15r35r55 1
3 r¹ . If r¹ is small

~to be precise, smaller than 2)23), it follows from Eqs.
~63! and ~64! that one ofr0 , r2 , andr4 is larger than the
other two, say,r0.r2 ,r4 . Thus the symmetry between th
sublattice 0, 2, and 4 is broken. If there is no further sy
metry breaking thenr25r4 andr15r35r5 , so

r0.r15r35r5.r25r4 . ~65!

By the same token the symmetry between the sublattice
3, and 5 is broken whenr¹ is close to 1. Whenr¹ is in-
creased from 0 to 1 the following seems to be the simp
possible scenario. Atr¹50, sublattice 0 is fully occupied
and the other sublattices are empty. The six sublattice de
ties change continuously withr¹ , and Eq.~65! holds up to
r¹5 1

2 . There the six sublattice densities are all equal to1
6.

Then one of the odd sublattices, say 3, takes over and

r3.r05r25r4.r15r5

all the way tor¹51 where all trimers sit on sublattice 3.

B. Entropy for r¹

In the previous subsection the occurrence was sugge
of a phase transition whenr¹ is increased from 0 to 1. Fo
the study of such a phase transition it would be helpful
know the entropy of the model as a function ofr¹5r1
1r31r5 . However, what we have computed thus far is t
entropy as a function of all sublattice densities, but only
a two-dimensional subspace. Therefore, for a givenr¹ the
sublattice densities have to be determined for which the
tropy is maximal. If we are fortunate these sublattice den
ties happen to lie in the two-dimensional solved subspac

For a givenr¹, 1
2 , the most symmetric possibility for th

six sublattice densities is described by Eq.~65!. Another pos-
sibility,
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r25r4.r15r35r5.r0 , ~66!

exists when 2)23<r¹, 1
2 . Because of symmetry, Eqs

~65! and~66! are stationary points of the entropy. It is temp
ing to believe that Eq.~65!, being the more general of th
two most symmetric cases, corresponds to the maximum
the entropy. By numerically solving the BAE’s, the entrop
of the model can be computed to high precision. Such c
culations confirm that forr¹, 1

2 , the entropy takes its maxi
mum at the symmetric case~65! of the sublattice densities
hence within the solvable subspace.

As seen in Sec. VI D for the solvable subspace one
r05r25r4 in cases I and IV andr15r35r5 in cases II and
III. Consider case II and takeb̂ on the imaginary axis be
tween 0 and 2i . The contoursĴ and Ĥ then lie symmetric
with respect to the imaginary axis, sorL5rR and hencer2
5r4 . Thus this is precisely the symmetric case~65!. There-
fore we have obtained the entropy as a function ofr¹ for
r¹, 1

2 . The entropy forr¹. 1
2 follows immediately by the

symmetry between up and down trimers. This entropy c
also be obtained by considering case I and takingb̂ above 2i
on the imaginary axis. The resulting entropy is shown in F
10. When in case II,b̂ is not taken on the imaginary axi
between 0 and 2i ,r2Þr4 . Figure 11 shows the entropy as

FIG. 10. The entropy per trimerS as a function of the total
density of down trimersr¹5r11r31r5 . It is obtained from the
exact solution in the special case~65! for r¹< 1

2 and similarly for
r¹> 1

2 .

FIG. 11. The entropy per trimerS as a function ofr22r4 at
fixed r15r35r5 . The end points of the lower curve (r¹50.45)
are determined byr250 and by r450. The upper curve (r¹

50.48) terminates whenr45r0 and whenr25r0 . At the left end
point of the middle curve (r¹52)23'0.4641) r250 and r4

5r0 , at the right end pointr450 andr25r0 .
2-14
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function of the asymmetryr22r4 at fixedr15r35r5 along
the line determined by the constraints~1! and ~2!.

For b̂52i , all four cases I, II, III, and IV coincide. The
integrals in Sec. VI A then simplify. The sublattice densiti
are all equal to 1

6 and the entropy per trimer isSsym

5 ln 4
3).

C. Phase transition

Consider a system withr¹ between 0 and12. The energy is
a convex function ofr¹ , so the system is thermodynam
cally unstable. It would separate into a frozen phase w
r¹50 and the symmetric phase withr¹5 1

2 . However an
interface between these two phases is not possible in
model. Similarly, a system withr¹ between1

2 and 1 would
demix into phases withr¹5 1

2 andr¹51 if coexistence be-
tween these phases were possible.

Now give a chemical potentialm¹ to the down trimers
instead of imposing their densityr¹ . The free energy

F52m¹r¹2S~r¹!

takes its global minimum at

r¹5H 0 for m¹<22Ssym

1
2 for 22Ssym<m¹<2Ssym

1 for 2Ssym<m¹

.

Therefore the model is in a frozen phase form¹,22Ssym
and form¹.2Ssym and in the symmetric phase for22Ssym
,m¹,2Ssym. At m¹522Ssym, and atm¹52Ssym there is
coexistence between a frozen and a symmetric phase.

VIII. CONCLUSION

We have introduced a different simple lattice model. It
a fluid of particles each occupying three sites of the trian
lar lattice. We distinguish six sublattices of adsorption si
for the trimers. Full occupancy and a resulting geome
constraint leave of the six sublattice densities four indep
dent parameters.

In the full four-dimensional parameter space the mode
solvable by the Bethe ansatz. In the thermodynamic limit
Bethe ansatz equations can be reduced to two integral e
tions. In a two-dimensional subspace of the sublattice de
ties, these integral equations can be solved by mean
monodromy and analyticity properties of the functions
volved. Within this subspace the entropy and the sublat
densities are given as integral expressions.

The solution is very similar to that of the square-triang
random tiling model@15,16#. In both these cases the solutio
is closely connected to the hexagonal domain-wall struc
of the model. Another solvable model with such a doma
wall structure is the three-coloring model on the honeyco
lattice @20#. In a configuration of this model the edges of t
honeycomb lattice are coloured with three colors in suc
way that the three edges meeting in each vertex have di
ent colors. Alternatively this model can be formulated as
zero-temperature antiferromagnetic three-state Potts m
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on theKagomélattice @21,22#. We shall now briefly discuss
the relation between these three models.

The domain-wall structure of the trimer model is depict
schematically in Fig. 12. It contains two types of Y joints b
only one type of inverted Y joints. In the square-triang
tiling, there is only one type of Y joints and one type
inverted Y joints. In the honeycomb lattice three-colorin
model, on the other hand, both the Y joints and the inver
Y joints come in two types. Hence these three models app
to be different.

The A2
(1) model is a vertex model on the square latti

derived from an affine Lie algebra@23,24#. It satisfies the
Yang-Baxter equation@25,26#, so it can be solved by alge
braic Bethe ansatz@27#. At a special value of the spectra
parameter it is the three-coloring model on the honeyco
lattice @28#. For a suitable choice of the remaining param
eters, one of the two types of Y joints and inverted Y join
in the domain-wall network is excluded. In this limit th
model is just the square-triangle tiling. This mapping ‘‘e
plains’’ the solvability of the square-triangle tiling in term
of that of theA2

(1) model @29#.
In a similar fashion the square-triangle tiling can also

obtained from the trimer model. When the trimers on sub
tice 4 ~or 2! are excluded, one~or the other! type of Y joint
no longer occurs in the domain-wall network. Again th
square-triangle tiling results. The Bethe ansatz for the trim
model remains valid in this special case. However, the s
stitutions ~25! no longer makes sense whenw450 ~or w2
50), so the same is true of the analysis in the subsequ
sections.

Therefore the three models are connected in sense
both the trimer model and theA2

(1) model contain the square
triangle random tiling as a singular limit. It would be inte
esting to know if the trimer model, like the square-triang
tiling, is a special case of some model satisfying the Ya
Baxter equation.
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FIG. 12. Schematic representation of the domain-wall struct
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APPENDIX: PERTURBATION ANALYSIS

In Sec. VI A, the quantitiesrL , rR, fL , fR, and F5

2(SL1SR) were obtained as functions ofb̂5b̂L5b̂R. For
the computation of the sublattice densities and the entro
the derivatives

S ]F

]fL
D

rLrRfR

and S ]F

]fR
D

rLrRfL

are also needed as functions ofb̂. These cannot be calculate
by differentiation of theF already obtained, because vari
tion of fL (fR) at constantrL , rR andfR (fL) breaks the
condition b̂L5b̂R. Therefore in this appendix we infinites
mally relax that condition and computerL , rR, fL , fR,
andF52(SL1SR) to leading order in the infinitesimal re
laxation parameter.

When the curvesĴ andĤ do not close,gL( ẑ) andgR( ẑ)
are no longer single-valued functions of the variablet. Kalu-
gin @16# has provided a perturbation analysis for the ana
gous situation in the square-triangle random tiling model
leans heavily on the understanding of the structure of
Riemann surface of the functions. Our approach does
require such knowledge and is more systematic.

Although gL( ẑ) and gR( ẑ) are no longer single-value
functions of the variablet, one can still perform the variabl
transformation~50!. The end pointsb̂L andb̂L* of Ĵ (b̂R and

b̂R* of Ĥ) then correspond to pointsdL and dL*
21 (dR and

dR*
21) in the t plane. The pointb̂ in Eq. ~50! can be chosen

such thatudLu5udRu; we write

dL5bLd and dR5bRd,

with d real and positive andubLu5ubRu51. The curves cor-
responding toĴ andĤ divide the annulusd,utu,d21 into
sectors, much as in Fig. 8. We get a single-valued func
h(t)5g( ẑ) in this annulus instead of in the wholet plane.
Since it is analytic in the annulus it can be expanded a
Laurent series int,

g~ ẑ!5h~ t !5 (
p52`

`

Aptp. ~A1!

Figure 8 shows thath(t)1h(2t)50 and that h(t)
1h(te2p i /3)1h(te22p i /3)50, so thatAp50 unlessp[61
~mod 6!. From Eq.~43! one has

h~ t* 21!5g~ ẑ* !5g~ ẑ!* 5h~ t !* ,

so the coefficientsAp satisfy
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A2p5Ap* . ~A2!

We want to view the functiong( ẑ) given by Eq.~A1! as a
perturbation around the functiong( ẑ) given by Eq. ~55!,
where d is the small parameter. In our notation we ha
suppressed the dependence of the coefficientsAp on d, bL ,
andbR.

The functiong( ẑ) satisfies the integral equation~48!. We
investigate how each of the termstp from the Laurent series
~A1! of g( ẑ) behaves in this equation. In order to compu
the integral we change fromĥ to t5t(ĥ) defined by Eq.
~50! as integration variable. The resulting integrand is a
tional function int, which we decompose into partial frac
tions. Integration yields polynomial as well as logarithm
terms; some care is required in choosing the branch of
logarithms. Finally we expand in powers ofd, obtaining

1

2p i EĤ

1

ĥ2 ẑ
tpdĥ

5tp2t1
p1

6

2p i H (
q52`

21 bR
p26q

p26q
~ t6q21!dp26q

1 (
q51

` bR
p26q

p26q
~ t6q21!d6q2pJ ~A3!

for each termtp in the Laurent series~A1!. Heret in the RHS
corresponding toẑ in the LHS is in the sector containingt1 ,
that is, the sector whereg( ẑ) equalsgL( ẑ). Comparison with
the integral equation~48! shows the following. The termtp

in the RHS of Eq.~A3! exactly matches the termgL( ẑ) in the
LHS of Eq. ~48!. The inhomogeneous term2t1

p in the RHS
of Eq. ~A3! corresponds to the inhomogeneous term 1 in
integral equation. The other terms in the RHS of Eq.~A3! are
‘‘unwanted’’; the powers oft they involve are multiples of 6.
Because the Laurent series~A1! satisfies the integral equa
tion ~48!, the inhomogeneous terms2t1

p from Eq. ~A3!
counterbalance the inhomogeneous term 1 of the inte
equation,

(
p52`

`

t1
pAp51, ~A4!

@which means thatgL(`)51], and the unwanted terms can
cel,

(
p52`

` bR
p

p26q
dpAp50, for all q,0, ~A5!

(
p52`

` bR
p

p26q
d2pAp50, for all q.0. ~A6!

@Due to Eq.~A2!, the equations forq and 2q are equiva-
lent.# The functiong( ẑ) also satisfies the integral equatio
~49!; this leads to another similar set of conditions on t
coefficientsAp .
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The form of Eqs.~A5! and ~A6! and their analog from
~49! suggests that forbL and bR fixed, the coefficientsAp
should be power series ind,

Ap5Ap
~0!1Ap

~1!d1Ap
~2!d21¯ . ~A7!

We would like to determine the coefficientsAp
(h) .

Whent approaches the boundary of the annulus,utu→d or
utu→d21, the unperturbed functiong( ẑ) given by Eq.~55!
becomes of the orderd. It seems reasonable to assume t
the termsAptp of the perturbed functiong( ẑ) do not grow
faster than this, so the coefficientsAp

(h) with h,upu21 must
be zero.

Consider Eq.~A4! and its analog from~49!. Substitution
of the power series~A7! yields, after rearrangement of th
terms,

(
h50

`

dhS (
p52~h11!

h11

tk
pAp

~h!D 51 for k51,5. ~A8!

The d0 part gives

tkA1
~0!1tk

21A21
~0!51, for k51,5.

The unique solution of these equations reproduces the un
turbed functiong( ẑ) given by Eq.~55!. For 1<h<3 thedh

part of Eq.~A8! gives

tkA1
~h!1tk

21A21
~h!50, for k51,5.

This implies thatA1
(h) andA21

(h) are zero. Thed4 part of Eq.
~A8! gives

tkA1
~4!1tk

21A21
~4!1tk

5A5
~4!1tk

25A25
~4!50, for k51,5.

These equations have two linearly independent solutions
of which satisfies Eq.~A2!. Substituting these results int
Eqs.~A7! and ~A1! yields

g~ ẑ!5t1t211C~ t252t !1C* ~ t52t21!1O~d5!,
~A9!

where we have written

A25
~4!d45C and A5

~4!d45C* .

Note that Eq.~A9! can be written in the form~53!. We have
used Eqs.~A5! and ~A6! only to come up with the serie
expansion~A7!. These equations would be needed if the c
efficientsAp

(h) with h.4 were to be determined. Knowledg
of these coefficients would yield a solution to the integ
equations~48! and~49! also for a finite opening betweenb̂L

and b̂R. Unfortunately we have not been able to calcula
these coefficients, but fortunately they are not needed
cause the present purpose is only to computerL , rR, fL ,
fR, andF52(SL1SR) to leading order ind.

As our aim is to calculate the quantitiesrL , rR, fL , fR,
and F, we substitute Eqs.~A1! and ~A7! into the integral
expressions from Sec. VI A. For Eq.~57! this gives, after
transforming tot as integration variable,
06612
t

er-

ne

-

l

e
e-

rL5
1

2p i (
p52`

`

(
h5upu21

`

Ap
~h!dhE

bLd21

bLd
tp

1

Aẑ214

dẑ

dt
dt.

~A10!

For eachp andh we determine the order ind of the contri-
bution. Whent→0 or t→`, the integrand is proportional to
tp15 and tp27, respectively. Hence the integral is bounde
of order 0 ind, that is, for upu<5, logarithmic ind for upu
56, and of order 62upu in d for upu>7. Note that the coef-
ficientsAp

(h) with upu56 are zero. Letm denote the order in
d of the integral. The order ind of the whole contribution is
h1m,

upu m h h1m

1 0 0 0
1 0 4 4
1 0 >5 >5
5 0 4 4
5 0 >5 >5

>7 62upu >upu21 >5

ThereforerL in Eq. ~A10! has ad0 contribution from the
unperturbed part in the RHS of Eq.~A9!, a d4 contribution
from the part involvingC and C* , and contributions of
higher order ind from the parts collected in theO(d5) term,
so

rL5
1

2p i EbLd21

bLd

@ t1t211C~ t252t !

1C* ~ t52t21!#
1

Aẑ214

dẑ

dt
dt1O~d5!.

In the RHS the integration limits may be changed fro
bLd21 andbLd to ` and 0 as this makes a differenceO(d5).
Transforming back toz as integration variable then gives

rL5
1

2p i EJ~0!
@ t1t211C~ t252t !1C* ~ t52t21!#dz

1O~d5!,

whereJ (0) denotes the unperturbed (d50) contour. Hence
rL is given to leading order inC;d4 by Eq.~57! where now
f (z) is given by Eq.~60! instead of Eq.~56!, and integration
is over the unperturbed contour. Note thatbL andbR do not
occur in this expression. Similar arguments show that fu
analogous results hold forrR, fL , fR, SL , andSR: Up to
O(d5) they are given by the integrals~57!, ~58!, and~59! or
their R analogs, withf (z) given by Eq.~60!. Therefore we
have now obtained these quantities to leading order, nam
d4, in the parameterd that describes the infinitesimally sma
openingb̂L2b̂R;d6 between the end points ofĴ and Ĥ.
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